A Note on the Spectrum of any Self-adjoint Extension

by Chong Rock Lim

Abstract. In this note we consider properties for the discreteness of the spectrum of second-order differential operators. If we give some conditions, then the spectrum of any self-adjoint extension of A_0 , $A_0u=a[u]$, $D(A_0)=C_0^{\infty}(0.1)$ is discrete.

1. Introduction

The spectrum of an operator A is discrete if and only if $\sigma_{\epsilon}(A)$ is empty. Let p(x) and q(x) be real-valued functions defined on the interval $w=[x_1,x_2]$, with length |w| where $p(x)\geqslant 0$ and $p^{-1}(x)$ and q(x) are integrable over w. Let $\mu w=\frac{1}{|w|}\int_{-w}^{\infty}q(x)\ dx$ denote the mean value of q(x) on w, and let either $q(x)\geqslant 0$ or $q(x)\leqslant 0$ on w. Then

$$\left(\int_{\mathbb{R}^{n}} (p(x) |u'|^{2} + q(x) |u|^{2}) dx \geqslant \mu_{w} (1 + |w| \mu_{w} \right) \int_{\mathbb{R}^{n}} p^{-1}(x) dx^{-1} ||u||^{2}_{w}$$

for every (complex valued) function $u(x) \in C^1(x_1, x_2)$.

We assume that the $a_k(x)$ satisfy the following conditions

- i) $a_k(x) \in W_2^k(0, X)$, $0 \leqslant K \leqslant n$, for all X > 0.
- ii) $a_n(x) > 0$, $0 \le x \le \infty$.

The first condition means that $a_k(x)$ belongs to the Sovolev-space $W_2^k(0, X)$ for all x, 0 < x < X. We consider the spectrum of differential operators.

2. Auxiliary results

Now, we list some lemmas necessary to developing our discussion further in our particular direction.

Lemma 1. If $a_k(x) \ge 0$ on the interval $w = (x_1, x_2)$ for all K, then the inequalities

$$\sum_{k=r}^{s} \int_{w} a_{k}(x) |u^{(k)}|^{2} dx \ge \left(w^{2(s-r)} \rho_{w,s}^{-1} + \sum_{k=r}^{s-1} |w|^{2(k-r)} \mu_{w,k} \right)^{-1} \|u^{(r)}\|^{2} w, \ 0 \le r < s \le n,$$

hold for all $u(x) \in C^n(x_1, x_2)$, where

$$\mu_{w,k} = \frac{1}{|w|} \int_{w} a_k(x) dx \text{ and } \rho_{w,k} = \left(\frac{1}{|w|} \int_{w} \frac{dx}{a_k(x)}\right)^{-1}, \ 0 \leqslant k \leqslant n.$$

Next we consider necessary and sufficient condition for the discreteness of the spectrum of secondorder differential operators where the behaviour of the highest is not restricted by a power x^{α} .

Lemma 2. Let the coefficients of the Sturm-Liouville differential expression

$$a[\cdot] = -\frac{d}{dx} p(x) \frac{d}{dx} + q(x), \quad 0 \le x < \infty$$

satisfy the following conditions.

- i) $p(x) \in W_2^{-1}(0, X)$ and $q(x) \in L_2(0, X)$ for all X > 0.
- ii) p(x)>0, $0 \le x < \infty$, and $\lim_{x \to \infty} \inf q(x) > -\infty$.
- iii) There are positive constants ho, co, and Co such that

$$C_0 p(x_1) \leqslant p(x_2) \leqslant C_0 p(x_1)$$
 for $0 \leqslant x_1 \leqslant x_2 \leqslant x_1 + h_0 p^{1/2}(x_1)$.

Then the spectrum of any self-adjoint exclusion of A₀,

$$A_0u=a[u], D(A_0)=C_0^{\infty}(0,\infty),$$

is discrete if and onlf if

$$\lim_{x\to\infty}\frac{1}{p^{1/2}(x)}\int_{x}^{x+hp^{1/2}(x)}q(t)dt=\infty \text{ for each fixed }0< h<1.$$

Lemma 3. Every increasing function p(x) satisfies

$$C_0p(x_1) \le p(x_2), x_1 \le x_2 \le x_1 + h_0p^{1/2}(x_1), x_1, x_2 \in (0, \infty), C_0 > 0$$

3. The main Theorem

Theorem. Let the coefficients of the Sturm-Liouville differential expression

$$a[\cdot] = -\frac{d}{dx} p(x) \frac{d}{dx} + q(x), \quad 0 < x \le 1.$$

satisfy the following conditions.

- i) $p(x) \in W_2^1(X, 1)$ and $q(x) \in L_2(X, 1)$ for all X, 0 < X < 1.
- ii) There is a constant $C_b > 0$ such that

$$0 < p(x) \le C_p x^2$$
, $q(x) \ge 0$, $0 < x \le 1$.

iii) There exist positive constants ho, co, Co such that

$$c_0p(x_1) \le p(x_2) \le c_0p(x_1), x_1 \le x_2 \le x_1 + h_0p^{1/2}(x_1), 0 < x_i \le 1, i=1, 2.$$

Then the spectrum of any self-adjoint extension of A_0 , $A_0u=a[u]$, $D(A_0)=C_0^{\infty}(0,1)$ is discrete if and only if

$$\lim_{x\to 0} \frac{1}{p^{1/2}(x)} \int_{x}^{x+hp^{1/2}(x)} q(t) dt = \infty \text{ for each } h, \ 0 < h \ \min(h_0, \ C_p^{-(1/2)}).$$

Proof. we define a sequence x_n by

$$x_{v+1} = x_v - hp^{1/2}(x_v), 0 < h < min(h_0, C_p^{-1/2}), v=1, 2, ..., x_1=1,$$

and we have $x_v \rightarrow 0$ as $v \rightarrow \infty$.

For a given $\varepsilon > 0$ we find a value x_{ε} , $0 < x_{\varepsilon}$ such that

$$(A_0u, u)_{(0,1)} \ge (2\varepsilon)^{-1} \|u\|^2_{(0,1)}, u \in C_0^{\infty}(0, x_{\varepsilon})$$

Therefere $\sigma_{\bullet}(\hat{A}) = \phi_{\bullet}$

References

- 1. A. Kufner et. al., Function spaces, Noordhoff international publishing, 1977.
- 2. F. Treves, Topological vector space, distributions and kernels, Academic press, 1967.
- 3. B.V. Limaye, Functional analysis, John Wiley & sons, 1981.
- 4. H.R. Dowson, Spectral theory of linear operators, Academic press, 1978.
- 5. E.M. Pfeisfer, Spectral theory of ordinary differential operators, John Wiley & sons, 1981.