On Bounded Linear Mappings on Topological Vector Spaces

By Lee Hyung-Jae
Kyungju College, Dongguk University, Kyungju, Korea.

I. Introduction

Just as the notion of a metric space generalizes to that of a topological space, so the notion of a normed vector space generalizes to that of a topological vector space (briefly, TVS).

It is well known that a linear mapping from a normed vector space into a normed vector space is continuous if and only if it is bounded [1, P. 210].

In this paper, we show that a similar property holds for linear mappings on TVS. Since the topology of a TVS is determined by the origin θ , in section II, we study the properties of neighborhoods of θ . In section III, we define the bounded sets of TVS and the bounded linear mappings. In section IV, we generalize the boundedness and continuity for linear mappings on a normed vector space to the case on TVS.

II. Definitions and Preliminaries

Definition 2.1. A topological vector space (E, τ) over C is a vector space E over C, equipped with a topology τ that the mappings $(x, y) \rightarrow x + y$ from $E \times E$ into E and $(\alpha, x) \rightarrow \alpha x$ from $C \times E$ into E are continuous. Throughout this paper, C denotes the field of complex numbers.

TVS has the algebraic structure as a vector space and the topological structure as a topological space.

Let E be a TVS. Then the mapping $x \rightarrow x + x$ is a homeomorphism of E onto itself, and the mapping $x \rightarrow \alpha x (\alpha \neq 0)$ is a topological automorphism of E. Since the mapping $x \rightarrow x + x$ is continuous and the mapping $x \rightarrow \alpha x (\alpha \neq 0)$ is linear and continuous and the image of these mappings is the whole of E, the inverse mappings $x \rightarrow x - x$ and $x \rightarrow \frac{1}{\alpha}x$ exist and have the same properties.

Therefore, if U is a neighborhood of θ , $u+x_0$ is a neighborhood of x_0 . Further, if U is a neighborhood of θ , so is αu , for $\alpha \neq 0$. Hence the topology of a TVS is completely determined by a filter of neighborhoods of θ .

The following theorem is a criterion, expressed in terms of the neighborhoods of θ , for TVS.

Theorem 2.1. A filter \mathcal{F} on a vector space E is the filter of neighborhoods of the origin in a topology compatible with the linear structure of E if and only if it has the following properties:

- (1) The origin belongs to every subset U belonging to \mathcal{F} .
- (2) To every $U \in \mathcal{F}$ there is $V \in \mathcal{F}$ such that $V + V \subset U$.
- (3) For every $U \in \mathcal{F}$ and for every $\alpha \in \mathbb{C}$, $\alpha \neq 0$, we have $\alpha U \in \mathcal{F}$,

- (4) Every U∈F is absorbing.
- (5) Every $U \in \mathcal{F}$ contains some $V \in \mathcal{F}$ which is balanced.

Proof. The proof can be found in [2, P. 22].

Definition 2.2. A subset A of a vector space E is said to be absorbing if to every $x \in E$ there is a number $C_x > 0$ such that, for all $\alpha \in \mathbb{C}$, $|\alpha| \le C_x$, we have $\alpha x \in A$.

Definition 2.3. A subset B of a vector space E is said to be balanced if for every $x \in B$ and every $\alpha \in \mathbb{C}$, $|\alpha| \leq 1$, we have $\alpha x \in B$.

Definition 2.4. The metric d on a vector space E is said to be *translation invariant* if the following condition is verified:

$$d(x,y)=d(x+z, y+z)$$
 for all $x, y, z \in E$.

Definition 2.5. A TVS is said to be *metrizable* if the topology of the TVS is given by a translation invariant metric.

The following theorem is needed for the theorem 4.2.

Theorem 2.2. Let (E, τ) be a metrizable TVS. Then there is a countable basis $\{U_n | n=1, 2, 3, ...\}$ of neighborhoods of θ in E such that each U_n is balanced $U_1 \supset U_2 \supset U_3 \supset ...$ is totally ordered. **Proof.** Since E is a metrizable TVS, there is a metric $d: E \times E \to R$ defining τ . For each $n \in N$, if we set

$$W_n = \{x \in E \mid d(\theta, x) < \frac{1}{n}\},$$

then $\{W_n | n=1, 2, 3, ...\}$ is a countable basis of neighborhoods of θ , and so $\bigcap_{n=1}^{\infty} W_n = \{\theta\}$.

By Theorem 2.1, (5), each W_i contains a balanced neighborhood V_i of θ . If we take

$$U_1 = V_1, U_2 = V_1 \cap V_2, ..., U_n = V_1 \cap V_2 \cap ... \cap V_n, ...$$

as a basis of neighborhoods of θ , then U_n is balanced and

$$U_1 \supset U_2 \supset U_3 \supset \dots$$

Furthermore, since $U_n \subset W_n$ for $n \in \mathbb{N}$, we have

$$\bigcap_{n=1}^{\infty} U_n \subset \bigcap_{n=1}^{\infty} W_n = \{\theta\}$$

and hence $\bigcup_{n=1}^{\infty} U_n = \{\theta\}$.

III. Bounded sets

Definition 3.1. A subset B of the TVS E is said to be bounded if to every neighborhood U of the origin θ in E there is a number $\lambda \ge 0$ such that

$$B \subset \lambda U$$
.

Since a normed vector space is a TVS, we can define the bounded sets of the normed vector space in this way.

A subset B of the normed vector space (E, || ||) is bounded if there is a $\lambda \ge 0$ such that

$$B \subset \{x \in E \mid ||x|| < \lambda\}$$

The following properties are obvious.

- (1) Every subset of a bounded set is bounded.
- (2) Finite unions of bounded sets are bounded.

Theorem 3.1. In a TVS, compact sets are bounded.

Proof. The proof can be found in [2, P. 137].

Theorem If E is Hausdorff, then a converging sequence $\{x_n\}$ in E is bounded.

Proof. Let $\{x_n\}$ be a sequence converging to x_0 . Then the set

$$K = \{x_n | n=1, 2, 3, ...\} \cup \{x_0\}$$

is compact. By Theorem 3.1., K is bounded.

Since a subset of the bounded set is bounded, $\{x_n\}$ is bounded.

Theorem 3.3. In a TVS E, a subset B of E is bounded if and only if every sequence con tained in B is bounded in E.

Proof. If B is bounded, then every sequence contained in B is obviously bounded.

Conversely, suppose that B is unbounded. Then there is a neighborhood U of θ in E such that

$$B \not\subset nU$$
, for $n=1,2,3,...$

Hence, for each n=1, 2, 3, ..., there is a $x_n \in B-nU$ and hence the sequence $\{x_n\}$ cannot be bounded.

Theorem 3.4. The image of a bounded set B under a continuous linear mapping T of a TVS E into a TVS F is bounded.

Proof. Since T is continuous, given a neighborhood V of θ in F, there is a neighborhood U of θ in E such that

$$T(U) \subset V$$
.

Since B is bounded, it follows from $B \subset \lambda U(\lambda \ge 0)$ that $T(B) \subset T(\lambda U) = \lambda T(U) \subset \lambda V$. Hence T(B) is bounded in F.

IV. Bounded linear mappings

Definition 4.1. Let E and F be TVS. A linear mapping $T: E \rightarrow F$ is said to be bounded if T(B) is a bounded subset of F for every bounded set $B \subset E$.

Note that, by Theorem 3.4., a continuous linear mapping from a TVS into another TVS is bounded.

Theorem 4.1. Let E and F be normed vector spaces. Then a linear mapping $T: E \rightarrow F$ is bounded if and only if T is continuous.

Proof. The proof can be found in [1, P. 210].

Theorem 4.1. is generalized in the following theorem for the linear mappings on TVS.

Theorem 4.2. Let E be a metrizable TVS and let F be a TVS. Then a linear mapping $T: E \rightarrow F$ is bounded if and only if T is continuous.

Proof. Since, by Theorem 3.4., the sufficiency of the condition is obvious, we prove its necessity.

Suppose that T is not continuous. Then there is a neighborhood V of θ in F whose preimage $T^{-1}(V)$ is not a neighborhood of θ in E.

By Theorem 2.2., there is a countable basis $\{U_n|n=1,2,3,...\}$ of neighborhoods of θ in E such that each U_n is balanced and $U_1 \supset U_2 \supset U_3 \cdots$ is totally ordered.

Since $T^{-1}(V)$ is not a neighborhood of θ , for all $n \in \mathbb{N}$, we have

$$\frac{1}{n}U_n \not\subset T^{-1}(V).$$

Hence there is $x_n = \frac{1}{n} V_n$ such that $x_n \notin T^{-1}(V)$. Since $nx_n \in U_n$, the sequence $\{nx_n\}$ converges to θ in E. By Theorem 3.2., $\{nx_n\}$ is bounded in E. Since T is bounded, the sequence $\{nT(x_n)\}$ is bounded in F. Hence there is a $\lambda \geq 0$ such that

$$nT(x_n) \in \lambda V$$
 for all $n \in N$.

Since V is balanced, we have

$$T(x_n) \in \frac{\lambda}{n} V \subset V$$
 for all $n \ge \lambda$.

This contradicts our assumption; $x_n \notin T^{-1}(V)$.

Therefore T is continuous.

References

- 1. E. Hewitt and K. Stromberg, Real and Abstract Analysis Springer-Verlag, 1965,
- 2. F. Treves, Topological vector spaces, Distributions and Kernels, Academic press, 1967.
- 3. G. Köthe, Topological vector spaces I, Springer-verlag, 1966.
- 4. H.L. Royden, Real Analysis, The Macmillan co., 1971.
- 5. S.K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-verlag, 1974.
- 6. W. Rudin, Functional Analysis McGraw-Hill, 1973.