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On Bounded Linear Mappings on Topological Vector Spaces

By Lee Hyung-Jae
Kyungju College, Dongguk University, Kyungju, Korea.

1. Introduction

Just as the notion of a metric space generalizes to that of a topological space, so the notion of a
normed vector space generalizes to that of a topological vector space (briefly, TVS).

It is well known that a linear mapping from a normed vector space into a normed vector space
is continuous if and only if it is bounded {1, P. 210].

In this paper, we show that a similar property holds for linear mappings on TVS. Since the to-
pology of a TVS is determined by the origin 6, in section II, we study the properties of neighbo-
rhoods of 4. In section III, we define the bounded sets of TVS and the bounded linear mappings.
In section IV, we generalize the boundedness and continuity for linear mappings on a normed vec-

tor space to the case on TVS,

II. Definitions and Preliminaries

Definition 2. 1. A topological vector space (E,7) over C is a vector space E over C, equipped
with a topology ¢ that the mappings (z,y —z+y from EXE into E and (a, ) ~az from Cx E into
E are continuous. Throughout this paper, € denotes the field of complex numbers.

TVS has the algebraic structure as a vector space and the topological structure as a topological
-space.

Let E be a TVS. Then the mapping x—z+z is a homeomorphism of E onto itself, and the
mapping z—az{a#0) is a topological automorphism of E. Since the mapping z—z-+z is contiuous

-and the mapping z—az(a#0) is linear and continuous and the image of these mappings is the
1
a
Therefore, if U is a neighborhood of 6, u-+z, is a neighborhood of =z, Further, if U is a nei-

whole of E, the inverse mappings r—z—z and z—-z exist and have the same properties.

ghborhood of 8, so is au, for a#(. Hence the topology of a TVS is completely determined by a
filter of neighborhoods of 6.
The following theorem is a criterion, expressed in terms of the neighborhoods of 6, for TVS.

Theorem 2.1. A filter F on a vector space E is the filter of neighborhoods of the origin in a
2opology compatible with the linear structure of E if and only if it has the following properties:

(1) The origin belongs to every subset U belonging to .

(2) To every U=F there is VETF such that V+VCU.

(3) For every U=F and for every aeC, a+(0, we have aU=s§F.



(4) Every U=F is absorbing.
(5) Every U=F contains some VEF which is balanced.
Proof. The proof can be found in [2, P. 22].

Definition 2.2. A subset A of a vector space E is said to be absorbing if to every z=E there
is a number C,>0 such that, for all «a=C, |a|<C,, we have az=A.

Definition 2.3. A subset B of a vector space E is said to be balanced if for every z=B and.
every a=C, |a|<1, we have areB.

Definition 2.4. The metric d on a vector space E is said to be tramslation invariant if the foll~
owing condition is verified:
d(z,y)=d(z+z, y+z) for all z,y,2E.

Definition 2.5. A TVS is said to be metrizable if the topology of the TVS is given by a tran-
slation invariant metric.

The following theorem is needed for the theorem 4,2,

Theorem 2.2, Let (E,7) be a metrizable TVS. Then there is a countable tasis {U.|n=1,2,
3,...} of neighborhoods of 6 in E such that each U, is balanced U;DU,DU;D... is totally ordered.
Proof. Since E is a metrizable TVS, there is a metric d: EXE—R defining 7. For each n=N,,
if we set
W,=(z=E|d(0, 2) <4},

then {W,|n=1,2,3,...] is a countable basis of neighborhoods of #, and so F] W.={6}.
n=}

By Theorem 2.1. (5), each W; contains a balanced neighborhood V; of 8. If we take
U=V, U=ViN\Vy, oo, Uy=ViA Vaoe. N Vi, oo
as a basis of neighborhoods of 6, then U, is balanced and
UoU,0U;D....
Furthermore, since U,C W, for n=N, we have

N U,CN W,= {6}

n=1 n=1

and hence G U,={6}.
n=1

III. Bounded sets

Definition 3.1. A subset B of the TVS E is said to be bounded if to every neighborhood U of
the origin 6 in E there is a number 23>0 such that
BcaU.
Since a normed vector space is a TVS, we can define the bounded sets of the normed vector space
in this way.
A subset B of the normed vector space (E,| ||) is bounded if there is a 120 such that
BC {z=E| |z <)



The following properties are obvious.
(1) Every subset of a bounded set is bounded.
{(2) Finite unions of bounded sets are bounded.

Theorem 3.1. In a TVS, compact sets are bounded.
Proof. The proof can be found in [2, P. 137].

Theorem If E is Hausdorff, then a converging sequence {x,} in E is bounded.
Proof. Let {z,} be a sequence converging to z,. Then the set
K={z,|n=1,2,3,..} U {zd}
is compact. By Theorem 3.1., K is bounded.

Since a subset of the bounded set is bounded, {z,} is bounded.

Theorem 3.3. In a TVS E, a subset B of E is bounded if and only if every sequence con tained
in B is bounded in E.
Proof. If B is bounded, then every sequence contained in B is obviously bounded.
Conversely, suppose that B is unbounded. Then there is a neighborhood U of 8 in E such that
BZnU, for n=1,2,3,... .
Hence, for each 7n=1,2,3, ..., thereisa z,eeB—»U and hence the sequence {z,} cannot be bounded.

Theorem 3.4. The image of a bounded set B under a continuous linear mapping T of a TVS E
into a TVS F is bounded.

Proof. Since T is continuous, given a neighborhood V of ¢ in F, there is a neighborhood U of
g in E such that
TW)CV.
Since B is bounded, it follows from BCAU(A>0) that T(B)CTTQU)=AT(U)CaV. Hence T(B) is
bounded in F.

IV. Bounded linear mappings

Definition 4.1, Let E and F be TVS. A linear mapping T : E—F is said to be bounded if
T(B) is a bounded subset of F for every bounded set BCE.

Note that, by Theorem 3.4., a continuous linear mapping from a TVS intc another TVS is
bounded.

Theorem 4.1. Let E and F be normed vector spaces. Then a linear mapping T : E—F is bounded
if and only if T is continuous.
Proof. The proof can be found in [I, P. 210).

Theorem 4. 1. is generalized in the following theorem for the linear mappings on TVS.

Theorem 4.2. Let E be a metrizable TVS and let F be a TVS. Then a linear mapping T : E—F
is bounded if and only if T is continuous.

Proof. Since, by Theorem 3.4., the sufficiency of the condition is obvious, we prove its necessity.



Suppose that T' is not continuous. Then there is a neighborhood V of 6 in F whose preimage
T-1(V) is not a neighborhood of ¢ in E.

By Theorem 2.2,, there is a countable basis {U,|[n=1,2,3,...} of neighborhoods of ¢ in E such
that each U, is balanced and U,DU,DUs-++ is totally ordered.

Since T-(V) is not a neighborhood of 8, for all n&=N, we have

FUZT(V),

Hence there is x,.E% V. such that x,&& T-1(V). Since ax,=U,, the sequence {nz,] converges
to § in E. By Theorem 3.2., {nz.} is bounded in E. Since T is bounded, the sequence {#7(z,)}
is bounded in F. Hence there is a 1>>0 such that

nT(x,) AV for all neN,
Since V is balanced, we have
T(z,) EZTVC_V for all n>4.

This contradicts our assumption; z,=T-1(V),
Therefore T is continuous.
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