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1. Introduction

FIRST; I considered of the Lebesgue-Stieltjes integral of the real valued functions on (4,5 and
investigated a few the properties of the Lebesgue-Stieltjes integral on (g, 5].

SECOND; I considered of the Lebesgue-Stieltjes integral of the complex-valued functions on (a, 7.

THIRD; I investigated a few the properties and applications of the Lebesgue-Stieltjes integral of

the complex valued functions on [a,b].

2. The main results.

Definition 1. Let g be a nondecreasing function on (a,&]. Suppose that f(a,&) belongs to Z4.
The Lebesgue-Stieltjes integral of f over [a,d] is defined to be;

f (a, b)fdg= J(’fx (a, b)dg.

Theorem 1. Let ¢p=¢,+¢; be increasing function on [a,b], such that ¢(z)=¢,(z)+d.(x) and
J=f1+f; positive function on {(a,b] suck that f(z)=f(z)+fo(z). ‘

Let [f(@)dp() be lim TFE) {$@)—¢ (@i},
Suppose that if f : fdg or f :¢df exists, then the other exists.

Then [ fag+ [ gaf=55,08:0) - L5@8@ + [*fa@o+ [6airo+ [ o+ [*6d(h.
Proof. Suppose thatf:(f1+f2)d(¢1+¢z) exisis. Let a=1z,<&<x,<<a3<...L 2,1 <8, <2, —=b

be any partition of {a,5]. Let & =a, §..1=5, To=§};(f1+fz) (@i-1) (b1 +62) () —(hr+¢2) (6i-1)}, and
Ti=21+99) G0 ((Fi+£2) (20 — (i+f) @ion).

Hence To+ Ty=2f,(08:®) - 5fi06,@) + [ £id@0+ [ £ @0+ ["0d(ra+ [ 0.

If either max(z;—z;-;) or (max§;—&;_,) tends to 0, so does the other. Sincefb( fi+f)d(d+é2)
exists, it is the limit of T' as max(z;—z:_,) tends to 0, That is;fb(f1+f2)d(¢l+¢2):fbf,d(gﬂl)+

f zfzd@sz) + f Zfld@‘z) + f ” Fod(BD).



Since max(zx;—z;_,)—0, max(§;—§;.;)—0, T; tends to a limit, and Sofb(g')l-}-qu)d(fl-{-fz) exists.
That is; [ Gt g0 d (= [ 9ud(i+ [+ [(0d(rd+ [Tgd (s,

b b 2 2 b
Hence [ (fi+f)d@i+80+ [ i+ 80dUhit PO =LF0)6:®) ~ @@ + [ fid g+

[Cray+ [ raw+ [ aace+ [ sach.

Definition 2. Let function g be real valued and nondecreasing.

If f=f,+if, is a complex-valued function defined on [a,d] and if f fi dg and f f» dg exist, then
we say that f is Lebesque-Stieltjes integrable with respect to g. andfb fdg= f bfldg-l—ifbfzdg.

Theorem 2. Let ¢=¢,+¢, be real valued nondecreasing function on [a,b),

If f=Ffi+ifs is a complex-Valued function defined on [a,b] and iffbfl dg,, fbf2d¢2, fbf1d¢2 and.
[“1:asy exise, then [ ivifd@irtn= [ fdpi+ [ fidpwri [ fadsie [ £uags).

Proof. Since fd(py+g0=rd+fdpy, [ (irifddbirsn=[ (firifodder [*(htifodpe=
[*rdpiri[raas+ [fidgoei[ frdge= [ fapi+ [ fidpori[ fapir [t

Theorem 3, If ¢ is nondecreasing and absolutely continuous function on (a,b), Let fi and f, be
Lebesgue-Stieltjes integrable with respect to and f=f, +if; complex valued function on (a,b]). Then

[orao= [ hiitaas= [ frrifop.

Proof. Su‘ppose that f; is admissible step functions with representation f;{z)=0 for z&(a,d]
and f;(z)=C) for z=(as-,as), j=1,2, k=1,2,...,n.
Then f;p is Lebesgue integrable function on (a,5].

[nritog=[ro+if fa=gon [ g+isice [ o
¢ a a £=1 =

[ pY & k1

Since ¢ is the absolute continuous function on (e, 5], f :(fl—l—ifz)dgé:kZ:}l(Ck‘—HCkz) {p(ar)

g (@) =50 B0 — @0} HEZO B @) —gla) =30 [ grridee [T g
14 b .
Hence by @, @, [ (fi+ifdd'= [ (firifdp.

Theorem 4. Let f=f,+if; and g=g,-+ig, be complex valued function defined on (a,b) and ¢ be
real valued-nondecreasing function on (a,b). Suppose that fi and fs, g and g, are Lebesgue-Stieltjes

integrable on (a,8). Then [ (f+g)dg=[ fap+ [ gas.

Proof. Since f+g=fi+atilfiten, [ (fra)dp=[ (fi+adp+i[ (fr+ends.



Since f;, f» and g,, 8. are Lebesgue-Stieltjes integrable on (g, ], f:(fr*'gl) d¢=fbf1d¢+",g1d¢"
wd [[urgnds=[ futp [[gstp, Hence [ (rrards= [ rap [[dpi[ fadiei [ gt
if:gzd¢=f:f1d¢ +if:f2d¢+fzg1 d¢+if:g2d¢=f:fd¢+f:gd¢- Hencef:(f+g)d¢:fifd¢+

b
f gdo.

Theorem 5. Let f, and f. be real valued nonnegative function on (a,b)] andfb f1d¢+fb fodg exist.
Let ¢ be nondecreasing function on [a,b) and f=f,+if, be complex-valued function on [a,b].

Then there is £ (a,b) such thatfjf(a:) dg () =1, (é)ié {¢(x) —¢(zi)} +ife (&)EZ} {p(z) —¢(zi)}.

Proof. Since ¢ is nondecreasing function on [a, b], fb f(@ d¢(x)=fb fi(@x)do(x) +ifbf2d¢(x).
Since f ’ f(x)dp(z) and f bfz(z)cﬁ,’)(x) are Lebesgue-Stieltjes integral on [a,5). By the first mean

value theorem, there is £ (a,5) such that f : fl@)dp(x)=11& é {plz)—9¢ (@i} +ifs (ef)é1 {¢(x)
—¢(ziy) 1.

Theorem 6. Let f; be real valued nondecreasing functions on [a,b] (j=1,2) and let f=f,+if.

Suppose that ¢ is continuous real valued nondecreasing function on [a,b). Let yp be the Lebesgue-
Stieltjes measure corresponding to ¢.

Then there exists &=(a,b) such that f : f(x)dpp (@) =1f1(a) (&) —¢p @I+ F1(B) () — (&I +
i{f2(a) (&) —9(@]+f2(8) ($(B) —4(£)I}.

Proof. Let f;(x)=f(a) and ¢(x)=¢(a) for all 2<a, and let f;(z)=,f;(d) forall z>& (j=1,2).
Let pf; and p¢ be the Lebesgue-Stieltjes measures corresponding to f; and ¢. Then f;(a—)=
fi(a) and f;(0+)=F;(}) and ¢(z+)=¢(z—)=¢(x) for all z=(q,?).

[s@ausy@ = [ LEDIHED) g4y =f,6166) 51 @8 (@)

By theorem 5, there exists 6= (a, 5) such that || ¢(e)dpef; (2) =$ () uf; (e, B =¢ §)Lf; )~ £5(@)
(j=1,2). Since ¢ is continuous, we have up((z))=0 for all z and so [ LHEDILLED) g0
= [*fi@dm ).

Hence $(6)Lfs0) = F5@3+ [ £i@dup@)=f; 0)9®) ~f;@(@). That is; [ f;@)dub(a)=F,

©$0) ~£@$@ 4@ U ®) ~ F5@0I=F;@ $O —$ @1+ ;B $®) ~$(©), Since [ fz)ds @
=["r@a@+i[ fow@.

Hence f :f (2)dpg (z) = f1(a) ($(§) —¢(@ ]+ 1) ($(B) —$ (DI +i {f2(a) [($(©) —$ (@) +£2(8) [ ()
—¢(9)3}.
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