Study on the Lebesgue-Stieltjes Integral of the Complex Valued Function on [a, b]

by Dong Hark Lee Kangwon National University, Chuncheon, Korea

1. Introduction

FIRST; I considered of the Lebesgue-Stieltjes integral of the real valued functions on (a, b) and investigated a few the properties of the Lebesgue-Stieltjes integral on (a, b).

SECOND; I considered of the Lebesgue-Stieltjes integral of the complex-valued functions on [a, b].

THIRD; I investigated a few the properties and applications of the Lebesgue-Stieltjes integral of the complex valued functions on [a, b].

2. The main results.

Definition 1. Let g be a nondecreasing function on [a, b]. Suppose that f(a, b) belongs to \mathcal{L}^g . The Lebesgue-Stieltjes integral of f over [a, b] is defined to be;

$$\int_{(a,b)} f dg = \int f x(a,b) dg.$$

Theorem 1. Let $\phi = \phi_1 + \phi_2$ be increasing function on [a, b], such that $\phi(x) = \phi_1(x) + \phi_2(x)$ and $f = f_1 + f_2$ positive function on [a, b] such that $f(x) = f_1(x) + f_2(x)$.

Let
$$\int f(x)d\phi(x)$$
 be $\lim \sum f(\xi_i) \{\phi(x_i) - \phi(x_{i-1})\}$.

Suppose that if $\int_{a}^{b} f d\phi$ or $\int_{a}^{b} \phi df$ exists, then the other exists.

$$Then \int_{a}^{b} f d\phi + \int_{a}^{b} \phi df = \sum_{j=1}^{2} f_{j}(b) \phi_{j}(b) - \sum_{j=1}^{2} f_{j}(a) \phi_{j}(a) + \int_{a}^{b} f_{1} d(\phi_{2}) + \int_{a}^{b} \phi_{1} d(f_{2}) + \int_{a}^{b} f_{2} d(\phi_{1}) + \int_{a}^{b} \phi_{2} d(f_{1}).$$

Proof. Suppose that $\int_a^b (f_1+f_2) d(\phi_1+\phi_2)$ exists. Let $a=x_0 \le \xi_1 \le x_2 \le \xi_2 \le x_3 \le ... \le x_{n-1} \le \xi_n \le x_n = b$ be any partition of [a,b]. Let $\xi_0=a$, $\xi_{n+1}=b$, $T_0=\sum_{i=1}^n (f_1+f_2)(x_{i-1}) \{(\phi_1+\phi_2)(\xi_i) - (\phi_1+\phi_2)(\xi_{i-1})\}$, and $T_1=\sum_{i=1}^n (\phi_1+\phi_2)(\xi_i) \{(f_1+f_2)(x_i) - (f_1+f_2)(x_{i-1})\}$.

Hence
$$T_0 + T_1 = \sum_{j=1}^2 f_j(b)\phi_j(b) - \sum_{j=1}^2 f_j(a)\phi_j(a) + \int_a^b f_1d(\phi_2) + \int_a^b f_2d(\phi_1) + \int_a^b \phi_1d(f_2) + \int_a^b \phi_2d(f_1)$$
.

If either $\max(x_i-x_{i-1})$ or $(\max\xi_i-\xi_{i-1})$ tends to 0, so does the other. Since $\int_a^b (f_1+f_2)\,d(\phi_1+\phi_2)$ exists, it is the limit of T as $\max(x_i-x_{i-1})$ tends to 0. That is; $\int_a^b (f_1+f_2)\,d(\phi_1+\phi_2)=\int_a^b f_1d(\phi_1)+\int_a^b f_2d(\phi_2)+\int_a^b f_1d(\phi_2)+\int_a^b f_2d(\phi_1)$.

Since $\max(x_i - x_{i-1}) \to 0$, $\max(\xi_i - \xi_{i-1}) \to 0$, T_1 tends to a limit, and so $\int_a^b (\phi_1 + \phi_2) d(f_1 + f_2)$ exists. That is; $\int_a^b (\phi_1 + \phi_2) d(f_1 + f_2) = \int_a^b \phi_1 d(f_1) + \int_a^b \phi_2 d(f_2) + \int_a^b \phi_1 d(f_2) + \int_a^b \phi_3 d(f_1)$.

Hence
$$\int_{a}^{b} (f_1 + f_2) d(\phi_1 + \phi_2) + \int_{a}^{b} (\phi_1 + \phi_2) d(f_1 + f_2) = \sum_{j=1}^{2} f_j(b) \phi_j(b) - \sum_{j=1}^{2} f_j(a) \phi_j(a) + \int_{a}^{b} f_1 d(\phi_2) + \int_{a}^{b} f_2 d(\phi_1) + \int_{a}^{b} f_2 d(\phi_1) + \int_{a}^{b} f_2 d(\phi_1) + \int_{a}^{b} \phi_1 d(f_2) + \int_{a}^{b} \phi_2 d(f_1).$$

Definition 2. Let function g be real valued and nondecreasing.

If $f=f_1+if_2$ is a complex-valued function defined on [a,b] and if $\int f_1 dg$ and $\int f_2 dg$ exist, then we say that f is Lebesque-Stieltjes integrable with respect to g. and $\int_a^b f dg = \int_a^b f_1 dg + i \int_a^b f_2 dg$.

Theorem 2. Let $\phi = \phi_1 + \phi_2$ be real valued nondecreasing function on (a, b).

If $f=f_1+if_2$ is a complex-Valued function defined on [a,b] and $if\int_a^b f_1 d\phi_1$, $\int_a^b f_2 d\phi_2$, $\int_a^b f_1 d\phi_2$ and $\int_a^b f_2 d\phi_1$ exist, then $\int_a^b (f_1+if_2) d(\phi_1+\phi_2) = \int_a^b f_1 d\phi_1 + \int_a^b f_1 d\phi_2 + i \Big(\int_a^b f_2 d\phi_1 + \int_a^b f_2 d\phi_2\Big)$.

Proof. Since
$$fd(\phi_1 + \phi_2) = fd\phi_1 + fd\phi_2$$
, $\int_a^b (f_1 + if_2) d(\phi_1 + \phi_2) = \int_a^b (f_1 + if_2) d\phi_1 + \int_a^b (f_1 + if_2) d\phi_2 = \int_a^b f_1 d\phi_1 + i \int_a^b f_2 d\phi_1 + \int_a^b f_1 d\phi_2 + i \int_a^b f_2 d\phi_1 + \int_a^b f_2 d\phi_2.$

Theorem 3. If ϕ is nondecreasing and absolutely continuous function on [a,b]. Let f_1 and f_2 be Lebesgue-Stieltjes integrable with respect to and $f=f_1+if_2$ complex valued function on [a,b]. Then $\int_a^b f d\phi = \int_a^b (f_1+if_2) d\phi = \int_a^b (f_1+if_2) \phi'.$

Proof. Suppose that f_j is admissible step functions with representation $f_j(x) = 0$ for $x \notin [a, b]$ and $f_j(x) = C_k^j$ for $x \in (a_{k-1}, a_k)$, j=1, 2, k=1, 2, ..., n.

Then $f_i\phi$ is Lebesgue integrable function on [a, b].

$$\int_{a}^{b} (f_{1}+if_{2}) \phi' = \int_{a}^{b} f_{1} \phi' + i \int_{a}^{b} f_{2} \phi' = \sum_{k=1}^{n} C^{1}_{k} \int_{a_{k-1}}^{a_{k}} \phi' + i \sum_{k=1}^{n} C_{k}^{2} \int_{a_{k-1}}^{a_{k}} \phi'.$$

Since ϕ is the absolute continuous function on [a,b], $\int_a^b (f_1+if_2)\,d\phi = \sum_{k=1}^n (C_k^1+iC_k^2)\,\{\phi(a_k)\}$

$$-\phi(a_{k-1})\} = \sum_{k=1}^{n} C_k^{-1} \{\phi(a_k) - \phi(a_{k-1})\} + i \sum_{k=1}^{n} C_k^{-2} \{\phi(a_k) - \phi(a_{k-1})\} = \sum_{k=1}^{n} C_k^{-1} \int_{a_{k-1}}^{a_k} \phi' + i \sum_{k=1}^{n} C_k^{-2} \int_{a_{k-1}}^{a_k} \phi'.$$

Hence by ①, ②, $\int_{a}^{b} (f_1 + if_2) \phi' = \int_{a}^{b} (f_1 + if_2) d\phi.$

Theorem 4. Let $f=f_1+if_2$ and $g=g_1+ig_2$ be complex valued function defined on [a,b] and ϕ be real valued-nondecreasing function on [a,b]. Suppose that f_1 and f_2 , g_1 and g_2 are Lebesgue-Stieltjes integrable on [a,b]. Then $\int_a^b (f+g) d\phi = \int_a^b f d\phi + \int_a^b g d\phi$.

Proof. Since
$$f+g=f_1+g_1+i(f_2+g_2)$$
, $\int_a^b (f+g)d\phi = \int_a^b (f_1+g_1)d\phi + i\int_a^b (f_2+g_2)d\phi$.

Since f_1, f_2 and g_1, g_2 are Lebesgue-Stieltjes integrable on [a, b], $\int_a^b (f_1 + g_1) d\phi = \int_a^b f_1 d\phi + b_a g_1 d\phi$ and $\int_a^b (f_2 + g_2) d\phi = \int_a^b f_2 d\phi + \int_a^b g_2 d\phi$, Hence $\int_a^b (f + g) d\phi = \int_a^b f_1 d\phi + \int_a^b g_1 d\phi + i \int_a^b f_2 d\phi +$

Theorem 5. Let f_1 and f_2 be real valued nonnegative function on (a, b) and $\int_a^b f_1 d\phi + \int_a^b f_2 d\phi$ exist. Let ϕ be nondecreasing function on (a, b) and $f = f_1 + if_2$ be complex-valued function on (a, b).

Then there is $\xi \in (a, b)$ such that $\int_a^b f(x) d\phi(x) = f_1(\xi) \sum_{i=1}^n \{\phi(x_i) - \phi(x_{i-1})\} + i f_2(\xi) \sum_{i=1}^n \{\phi(x_i) - \phi(x_{i-1})\}$.

Proof. Since ϕ is nondecreasing function on [a,b], $\int_a^b f(x) \, d\phi(x) = \int_a^b f_1(x) \, d\phi(x) + i \int_a^b f_2 d\phi(x)$. Since $\int_a^b f(x) \, d\phi(x)$ and $\int_a^b f_2(x) \, d\phi(x)$ are Lebesgue-Stieltjes integral on [a,b]. By the first mean value theorem, there is $\xi \in (a,b)$ such that $\int_a^b f(x) \, d\phi(x) = f_1(\xi) \sum_{i=1}^n \{\phi(x_i) - \phi(x_{i-1})\} + i f_2(\xi) \sum_{i=1}^n \{\phi(x_i) - \phi(x_{i-1})\}$.

Theorem 6. Let f_j be real valued nondecreasing functions on [a,b] (j=1,2) and let $f=f_1+if_2$. Suppose that ϕ is continuous real valued nondecreasing function on [a,b]. Let $\mu\phi$ be the Lebesgue-Stieltjes measure corresponding to ϕ .

Then there exists $\xi \in (a,b)$ such that $\int_a^b f(x) d\mu \phi(x) = f_1(a) [\phi(\xi) - \phi(a)] + f_1(b) [\phi(b) - \phi(\xi)] + i \{f_2(a) [\phi(\xi) - \phi(a)] + f_2(b) [\phi(b) - \phi(\xi)] \}.$

Proof. Let $f_j(x) = f(a)$ and $\phi(x) = \phi(a)$ for all x < a, and let $f_j(x) = f_j(b)$ for all x > b (j=1,2). Let μf_j and $\mu \phi$ be the Lebesgue-Stieltjes measures corresponding to f_j and ϕ . Then $f_j(a-) = f_j(a)$ and $f_j(b+) = f_j(b)$ and $\phi(x+) = \phi(x-) = \phi(x)$ for all $x \in [a,b]$.

$$\int_{a}^{b} \phi(x) d\mu f_{j}(x) = \int_{a}^{b} \frac{f_{j}(x+) + f_{j}(x-)}{2} d\mu \phi(x) = f_{j}(b) \phi(b) - f_{j}(a) \phi(a).$$

By theorem 5, there exists $\xi \in (a, b)$ such that $\int_a^b \phi(x) d\mu f_j(x) = \phi(\xi) \mu f_j([a, b]) = \phi(\xi) [f_j(b) - f_j(a)]$ (j=1, 2). Since ϕ is continuous, we have $\mu \phi(\{x\}) = 0$ for all x and so $\int_a^b \frac{f_j(x+) + f_j(x-)}{2} d\mu \phi(x) = \int_a^b f_j(x) d\mu \phi(x)$.

Hence $\phi(\xi)[f_j(b)-f_j(a)]+\int_a^b f_j(x)d\mu\phi(x)=f_j(b)\phi(b)-f_j(a)\phi(a)$. That is; $\int_a^b f_j(x)d\mu\phi(x)=f_j(b)\phi(b)-f_j(a)\phi(a)$. That is; $\int_a^b f_j(x)d\mu\phi(x)=f_j(b)\phi(b)-f_j(a)\phi(a)-\phi(\xi)[f_j(b)-f_j(a)]=f_j(a)[\phi(\xi)-\phi(a)]+f_j(b)[\phi(b)-\phi(\xi)]$, Since $\int_a^b f_1(x)d\phi(x)+i\int_a^b f_2(x)d\phi(x)$.

Hence $\int_{a}^{b} f(x) d\mu \phi(x) = f_{1}(a) \left[\phi(\xi) - \phi(a) \right] + f_{1}(b) \left[\phi(b) - \phi(\xi) \right] + i \left\{ f_{2}(a) \left[\phi(\xi) - \phi(a) \right] + f_{2}(b) \left[\phi(b) - \phi(\xi) \right] \right\}.$

Reference

- 1. H.L. Royden, Real Analysis, Macmillan Company, New York, 1968.
- 2. J.C. Burkill, The Lebesgue integral, Cambridge University Press, London, New York, 1975.
- 3. G. de Barra, Measure theory and integration, Ellishorwood Limited, New York, 1981.
- 4. Ivan N. Pesin, Classical and modern integration theories, Academic press, New York, 1970.
- 5. Edwin Hewitt, Real and Abstract analysis, Springer-Verlag, Berlin, New York, 1969.
- 6. Haaser Sullivan, Real analysis, Van Nostrand Reinhold Company, New York, 1971.
- 7. Robert B. Ash, *Measure*, *Integration*, and *Functional Analysis*, Academic press, New York and London, 1972.
- 8. Harold Wayland, Complex Variables Applied in Since and Enginearing, Van Nostrand Reinhold company, New York, 1970.