On Collectively Compact Operators into (F)-Spaces

By Lau Jeung-Hark

Let X and Y be locally convex spaces and [X, Y] the set of continuous linear operators from X into Y, equipped with the topology of uniform convergence on compact sets. For a subset $\mathcal{K} \subset [X, Y]$ and a subset $B \subset X$, let $\mathcal{K}(B)$ denote $\{K(b) : K \in \mathcal{K}, b \in B\}$.

A subset $\mathcal{K}\subset [X,Y]$ is said to be *collectively compact* if there exists a O-neighborhood U in X such that $\mathcal{K}(U)$ is relatively compact.

In [6] it was proved that if $\mathcal{X} \subset [X, Y]$ is collectively compact then $\mathcal{X}(B)$ is relatively compact for every bounded subset $B \subset X$. Under what conditions does the collectively compactness of $\mathcal{X} \subset [X, Y]$ follow from the assumption that $\mathcal{X}(B)$ is relatively compact for every bounded subset $B \subset X$? For a compact operator, Grothendieck [3] proved that this is true if X is quasi-normable and Y a Banach space.

In this paper, for collectively compact operators, we show that it also holds if X is a (DF)-space and Y an (F)-space and that a compact set of compact operators is collectively compact.

Recall that a locally convex space X is *quasi-normable* if and only if for every O-neighborhood U in X there exists a O-neighborhood V in X such that for every $\varepsilon > 0$ there is a bounded subset $M \subset X$ with $V \subset M + \varepsilon U$ [3].

Theorem 1. Let $\mathcal{K}\subset [X, Y]$ be such that $\mathcal{K}(B)$ is relatively compact for every bounded subset $B\subset X$. Then \mathcal{K} is collectively compact if Y is an (F)-space and X a (DF)-space. i.e. if X satisfies the following two conditions [5]:

- (a) X has a countable fundamental system of bounded subsets.
- (b) Any bornivorous set in X which is two intersection of a sequence of closed absolutely convex O-neighborhoods in X is a neighborhood in X.

Before we prove this Theorem, we need the following Lemma.

Lemma 2. The Theorem holds if Y is an (F)-space and X satisfies the following conditions:

- (i) X is quasi-normable.
- (ii) For every sequence of closed absolutely convex O-neighborhoods U_n (n=1, 2,) there exists a sequence of positive α_n such that $\bigcap_{n=1}^{\infty} \alpha_n U_n$ is a O-neighborhood in X.

Proof. Let $(V_n)_{n=1}^{\infty}$ be a O-neighborhood base for Y and $f \in \mathcal{X}$. For each $f(V_n)$ let U_n be a closed absolutely convex O-neighborhood in X such that for every $\varepsilon > 0$ there exists a bounded set $M = M_{n,\varepsilon}$ with $U_n \subset M_{n,\varepsilon} + \varepsilon f^{-1}(V_n)$ $(n=1,2,\ldots)$. By (11) there exist positive α_n such that $U = \bigcap_{n=1}^{\infty} \alpha_n U_n$

is a O-neighborhood in X. Hence $f(U) \subset \alpha_n f(M_{n,\alpha_n}^{-1}) + V_n$ (n=1, 2, ...).

Thus f(U) is precompact, and therefore relatively compact, since Y is complete.

Proof of Theorem. It is known [7] that every (DF)-space is quasi-normable and easy to see [3] that for a (DF)-space condition (ii) is satisfied.

Corollary 3. The Theorem holds if Y is a Banach space and X quasi-normable.

Proof. V denoting the unit ball of Y and $f \in \mathcal{X}$, let U be a O-neighborhood in X such that for all s>0 there exists a bounded $M \subset X$ with $U \subset M_{\varepsilon} + \varepsilon f^{-1}(V)$. Then $f(U) \subset f(M_{\varepsilon}) + \varepsilon V$.

Theorem 4. Let $\mathcal{H} \subset [X, Y]$ be a compact set of compact operators. Then \mathcal{H} is collectively compact if Y is an (F)-space and X a (DF)-space.

Proof. Let B be a bounded O-neighborhood in X. For each $x \in B$, define $f_x : [X, Y] \to Y$ by $f_x(K) = K(x)$ where $K \in [X, Y]$. Consider the set $\mathcal{F} = \{f_x : x \in B\}$ restricted to the compact space \mathcal{K} . Let V be a O-neighborhood in Y. Then the set $W = \{K : K(B) \subset V\}$ is a O-neighborhood.

Now
$$\mathcal{F}(W) = \{f_x(K) : f_x \in \mathcal{F}, K \in W\}$$

= $\{K(x) : K \in W, x \in B\}$
= $W(B) \subset V$.

This proves the equicontinuity of \mathcal{F} . Hence, so is the closure of \mathcal{F} in the topology of uniform convergence on compact subsets, or equivalently here the topology of pointwise convergence. Now, for each $K \in \mathcal{K}$, $\overline{\mathcal{F}}(K) = \{f(K): f \in \overline{\mathcal{F}}\}$ is contained in $\overline{\mathcal{F}(K)} = \{f_x(K): f_x \in \mathcal{F}\} = \{K(x): x \in B\}$, which is compact [6]. Therefore $\overline{\mathcal{F}}(K)$ is relatively compact for each $K \in \mathcal{K}$. Since \mathcal{K} is compact, Problem 8-H [4] and the above imply that $\overline{\mathcal{F}}$ is compact in the topology of uniform convergence on compact subsets. Define $\phi: \overline{\mathcal{F}} \times \mathcal{K} \to Y$ by $\phi(K, f) = K(f)$. Since ϕ is continuous and $\overline{\mathcal{F}}$ and \mathcal{K} are compact, ϕ has compact image in Y. But the image of ϕ contains $\mathcal{K}(B)$; so \mathcal{K} is collectively compact.

Corollary 5. Every precompact set of compact operators is collectively compact if Y is quasi-complete and X a (DF)-space.

References

- DePree, J.D. and Higgins, J.; Collectively Compact Sets of Linear Operators, Math. J. 115(1970) 366-370.
- 2. van Dulst, D.; (Weakly) Compact Mappings into (F)-spaces, Math. Ann. 224 (1976) 111-115.
- 3. Grothendieck, A.; Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954) 57-123.
- 4. Kelley, J.L., Namioka, I. and co-authers; *Linear Topological Spaces*, (2nd corrected printing). Springer-Verlag, N.Y., 1976.
- 5. Köthe, G.; Topological Vector Spaces I, Spring-Verlag, N.Y., 1969.
- 6. Lau Jeung-Hark; On Collectively Compact and Precompact Sets of Linear Operators, M.A. Thesis, Korea University, 1983.
- 7. Ligaud, J.P.; Sur la theorie des espaces DF en l'absence de locale convexite, *Proc. London Math.* Soc. 28 (1974) 725-737.