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1. Introduction.

A generalized metric space is a pair (X,d) of a nonempty set X and a distance function d:
Xx X—[0, 0] satisfying
(1) d(z, =0 iff z=y,
(ii) d(z,y)=d(y,z),
(iii) d(z,2)=d(z,y)+d(,2),
for all z,y,2z in X. Such a space X is said to be complete if every Cauchy sequence in X converges.
Let X be a generalized metric space and let CL(X) be the set of all nonempty closed subsets of
X. For A,B in CL(X), define
N, (A)={y=X|d(z,y) <e for some z= A}, for e>0.
H(A, B)=inf 0| ACN,(B) and BCN,(4)}.
D(A, B)=inf{d(z, y) |z=4, y=B}
(A, B)=sup{d(z,y) | x4, y=B}

Then (CL(X),H) is a generalized metric space and H is called the Hausdorff metric on CL(X).
Obviously, D(A,B)<H(A,B)<8(A,B) for all 4,B in CL(X),

In 1976, Caristi proved a fixed point theorem in complete metric spaces which aroused a great
deal of interest, because it does not assume the continuity of the mapping under consideration [1].
This also extends the Banach’s fixed theorem. In proving this, Caristi used the transfinite induction,
but Ekeland [6] proved this theorem more easily by using his variational principle [5].

In this paper, we study the Ekeland’s fixed point theorem for single-valued and multi-valued
functions in generalized metric spaces and reformulate our main results in [16] in Ekeland’s form.
These results also extend and unify some Banach type fixed point theorems. In proving this, we
also follow the method of Park [15].

2. Main Theorems.
First, we begin with the following theorem of Ekeland.

Theorem 1, (Ekeland [6]) Let X be a generalizved complete metric space and f:X—X be a
selfmap. Suppose there exists a function ¢ . X—RU {+ oo} oo which is l.s.c. and bounded from
below such that .

d(z, fz) +e(f2)Se(x), for all z in X.
Then f has a fized point.
Proof. See Ekeland [6].



Theorem 2. Let X be a generalized comp ete metric space and f: X—X be a selfmap. Suppose

that there is a function ¢ : X—R\) {4+ oo} =0, bounded from below such that

d(z, fr) +e(fa)Se(x) &)
Jor all x in X. Then there is an x&=X such that {fz};=o converges to some §=X. Moreover, if ¢
is f-orbitally l.s.c. and fee {f*z}, then & is a fixed point of f.

Proof. Since oo, there is an z=X such that ¢(z)<eo, Then ¢(fr)<¢p(z)<<oo by (¥).
Inductively, we see that ¢(f"z) K¢ (f"1z) oo for n=1, Therefore, {p(frx))>, is a real decrea-
sing sequence, which is bounded from below. So {p(f"z)}:, is convergent. We have

d(frz, fr*z) Sp(frx) —p(fx)
d(fn-H.x, fu+2x) §¢(fﬂ+lx) _w(fn+21-)

d(frr-iz, frirz) Se(fr17'z) —p(f™**z), for m, p20.
By adding all the above, we can see that
d(frz, frrx) Sp(frz) —p(fr+iz).
Since the righthand-side of this inequality goes to 0 as » and p tend to oo, so does the lefthand-
side. Thus {f7z};- is a Cauchy sequence in X and converges to some é=X.

Suppose further that ¢ is f-orbitally Ls.c. and fé= {f"z}. Then ¢(®) <lim inf {f"zr}] implies
that o(§)=inf o (v). So ¢(§) S@(f§). But by(*), d(&, O +9(f&) Se(® and this is possible only

vE {f*s}

when &=f2. This completes the proof.

Remark. If ¢ is L.s.c. on X, then the condition fé< (f"z} is not needed to verify that & is a
fixed point of f. See Theorem 2 of Ekeland [6].
Example. Let X=[0,1]U {2} and 4 : XxX—[0, o] be defind by
d(z,y)=\z—y|, if x#2, y+2,
d(zx,y)=oco, if z=2 or y=2,
Then (X,d) is generalized complete metric space. Define f: X—X and ¢ : X—>RU {+ 0} as

follows;
f<x>={ 7 i &0
2, if 2=0

¢(I)= l—l—_lT, lf .‘L‘#—'O, 1,2

oo, if z=0,1, or 2
Then (*) holds for all £ in X, but f has no fixed point. Indeed, limf*z=0 for all z=X, but ©
is not f-orbitally Ls.c. at 0.

Theorem 3. Let X be a generalized metric space and f: X—CL(X) be a map. Suppose there is a
Junction ¢ . X—R {+o0) =00, which is bounded from below and such that
veeX, Ty.Efz, d(z,5.) +o(y) So(x). (**)
Then there is an iterative sequence (U} oy, #.<fu,_;, which converges to some £=X. Moreover,



if ¢ is L.s.c. on {4 and y.=Tu,}, then & is a fixed point of f, i.e. t=fe.
Proof. Choose %, in X so that ¢(u,) <o, Then there is a & fu, such that d(u,, u,) +¢(u) <
@ (uy). Hence ¢ () S¢ (%) <oo, Inductively, we can choose a sequence {,}, such that
U E fttny,
¢ (#,) <p(4,_y), and
Ay, ) T (U,) S (Ua1)
for all #=1, Therefore, as in the proof of theorem 2, we can see that {u,} converges to some
£=X. Suppose now that ¢ is l.s.c. on {#,}, then ¢(&)= ix(zf_)go(x) and so (&) Sy if y= [t}

‘But this is possible only when £=f&.

3. Applications.

Let X be a generalized metric space and f: X—X be a selfmap. Consider the following type of
.contraction conditions;

(1) d(fx, fy)=ad(z,y), 0£4,<1. Diaz and Margolis (4], Jung (11].

() d(fz, fy) Sad(z,y) +ad(z, fzr)+asd(y, fv), a;,a58320 and a,+a,+a;<1. Reich (18].

(3) d(fz,fy)Said(z,)+ad(z, fz)+axd(y, ¥) +a,[d(z, 5) +d(9, fz)], ay,a,05,a,20 and
ay+a;+as+24,<1. Iseki (18].

(4) d(fz, fy) Sa max {d(z,5),d(z, fz),d(3, fy), %Ed(x,fy)+d(y,fx3}, 0=a;=1, Ciri¢ (2].

Clearly, (1), (2) or (3) respectively implies (4). And (4) can be reformulated in our condition

i ——la d(z, fx), then ¢ satisfies (#) and f-orbitally l.s.c.
H

in theorem 2. Indeed, if we define p(z)=

in X.

In multi-valued case, let X be a generalized complete metric space and f:CL(X)—X be a
function. Consider the following conditions;

(1) H(fz, fy)=ad(z,5),0=a,<1. Nadler (14].

(2) H(fz, fy)<aiD(z, fz), 0Sa;s1. Czerwik (3].

3 H(fx,fy)éaltD(z,fx)+D(y,fy)],0§a1<—%—. Kaulgud (12].

(4) H(fz, fy)Sad(z, y)+a,D(x, fz)+a;D(y,fy), a1,a;,a:;20 and a,+a,+a;<1. Ray (17],
Reich (18].

(5) D(y, fy)s£ad(z,¥)+a,D(z, fx) for all y=fz, a,,a,20 and a;+a,<1. Himmelberg [17].

6) H(fz, fy)Sad(z,y) +a,(D(z, fz)+D(y, 3] +as(D(z, ) +D(y, fz)], a,a;,a320 and
a,+2a;,+2a;<1. Iseki [9], Ttoh [10].

(1) H(fz,fy)Sad(z, y)+a,D(z, fz)+a;,D(y, fy) +aD(z, fy)+asD(y, fz), a;z0 for all i and
min {a;+ay+as+2a,, a;+aztaz+2a5) <1, Kita (117,

(8) H(fz,fy)<a, max {d(z,3), D(z, fz), D@, fy), %ED<x,fy)+D(y,fz)]}, 0<a,=1, Ciri¢
2. ~
Obviously, (1)-(7) respectively implies (8). We will show that (8) can be reformulated in our
form. To begin with, let us see the following lemma;

Lemma. Suppose that (8) holds for all x,y in X. Then for any x=X, there exists a y.=fx and



k>1 such that
d(z,y:) Sk(D(x, fz) —D (¥, f5:)).
Proof. Let y=fz, then there exists z&sfy such that

d(y,») SH(fz, ) +-5"-D(z, fz) (See Nadler (14])
Since y=fr and 2&fy, D(z, fz) £d(x,y), D(y, fy)<d(y,2), D(z, fy)<d(z,z) and D(y, fz)=0.
Therefore by (8),

d(3,9) SH(fz, )+ D(z, f2)

—a, max {d(z,5), d(3,%), 4d(z,9) | +-15%D, f2)

=&, max(d(z,9), d(3,2)}+=5"D(z, fz)

If d(y,z)=2d(z,y),d(y,2) Sad(y, 2) +*—1-_§_g—l—d(y, z) ==1——*2_a—1‘d(y, ). But then z=y==zis in fz,

since 2E4.<1. Suppose d(z,5) 2d(5, ) then d(y, 2)Sad(z, )+ -5 d(z,) =130 d(z,5). In
1+a,

any case, D(y, fy)= d(»,2) = 5 d(z,y). Since y was arbitrary, we can choose ¥, in fz so that
a;+3 oo lta . 2(a+3)
d(z,y:)= 2a1+2D(x,fx) and D(y., fy)= 5 d(z:yz)- Let k= (@ +D (—ay) >1, then
k(D(z, fz) —D(3s, f¥:))
1+a1

2k(D(x, fx)— ) d(z, y:))
;k(%d(x,yx)——%-a—ld(x,yx»

= heg-d(z, 3 =d(z,5.).
This completes the proof.

From this lemma, we can set ¢(z)=EkD(z, fz) and this ¢ and y, satisfy (#x), And the fact that

¢ is Ls.c. on {1} in our theorem is obvious.
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