On $\overline{FC_A}$ Groups

by Woon-gab Jeong
Seoul National University, Seoul, Korea.

1. Introduction

Let G be a locally compact group. We shall denote the automorphism group of G by U(G) and the group of all inner automorphisms of G by In(G). For an arbitrary subgroup A of U(G), we denote the set of all elements $g \in G$ for which $\{f(g) | f \in A\}$ is precompact by $B_A(G)$. We recall that G is a $\overline{FC_A}$ group if $G = B_A(G)$.

Usually the case A=In(G) is considered and in this case \overline{FC} stands for $\overline{FC_A}$. In [1] the authors studied $B_A(G)$ for an arbitrary subgroup A of U(G), and raised the following open problem;

Does every locally compact totally disconnected \overline{FC} group have a compact invariant neighborhood of the identity?

This problem was actually solved by T.S.Wu and Y.K.Yu [2]. In this paper we shall generalize some of the results in the paper by modifying their techniques.

We shall need the following result [1. Theorem 3.11].

Theorem A Let A be a subgroup of U(G) containing In(G), E be a precompact periodic A-invariant subset of G. Then the closed subgroup generated by E is a compact A-invariant subgroup.

2. Locally compact groups with open $B_A(G)$

Theorem 1. Let G be a locally compact group, Then $B_A(G)$ is open if and only if G has a compact A-invariant neighborhood of the identity.

Proof. Suppose that G has compact A-invariant neighborhood N of the identity. Then clearly N is contained in $B_A(G)$. Since $B_A(G)$ is a subgroup of G, we conclude that $B_A(G)$ is open.

Conversely, suppose that $B_A(G)$ is open and G has no compact A-invariant neighborhoods of the identity. Let N be a compact neighborhood of the identity in G such that $N \subset B_A(G)$. Let V be an open symmetric neighborhood of the identity such that $\overline{V}^2 \subset N$. We shall construct sequences $\{x_n\}$ in G and $\{f_n\}$ in A satisfying the conditions

- (1) $y_n = x_1 x_2 ... x_n \in V$ for all n.
- (2) $f_n(x_{n+1}...x_m) \in V$ for all n and m, (m>n).
- (3) N, $f_1(y_1)N$, $f_2(y_2)N$, ..., $f_k(y_k)N$ are disjoint for all k.

First we show that the existence of such sequences is sufficient for the proof. Since $y_n \in V \subset N$ for all n, there exists a subnet $\{y_{n_k}\}$ that converges to a point $y \in N$. Now, for each n

$$f_n(y) = \lim_k f_n(y_{n_k}) = \lim_k f_n(y_n) f_n(x_{n+1}...x_{n_k}) = f_n(y_n) \lim_k f_n(x_{n+1}...x_{n_k})$$

Hence $f_n(y) = f_n(y_n) \overline{V}$ for each n. Suppose that $\{f_{n_k}(y)\}$ converges to some $x \in G$. Then $f_{n_k}(y)$ eventually lies in xV.

Hence $f_{n_k}(y) = xv_k$, $v_k \in V$ and we see that

$$x = f_{n_k}(y) v_k^{-1} \in f_{n_k}(y) \overline{V} \subset f_{n_k}(x_1...x_{n_k}) \overline{V}^2 \subset f_{n_k}(x_1...x_{n_k}) N.$$

This contradicts the condition (3), and hence the net $\{f_{n_k}(y)\}$ does not converge. A similar argument shows that $\{f_{n_k}(y)\}$ has no convergent subnets. Therefore $\{f(y) | f \in A\}$ is not precompact. But $y \in N \subset B_A(G)$. This is a contradiction.

Now let us start the construction. There exist $x_1 \in V$ and $f_1 \in A$ such that $N \cap f_1(x_1) N = \phi$. Otherwise, suppose N meets each set f(x)N, where $x \in V$, $f \in A$. Then $f(V) \subset NN^{-1}$. Thus, if we let $A_0 = \bigcup_{f \in A} f(V) \subset NN^{-1}$, we have a compact A-invariant neighborhood \bar{A}_0 of the identity; this is a contradiction to our initial assumption.

Suppose that we have constructed the sets $\{x_1, \ldots, x_k\}$ and $\{f_1, \ldots, f_k\}$ satisfying the conditions (1), (2), (3) for all $n \le k$. Now, consider the continuous mappings

$$x \longmapsto y_k x$$

 $x \longmapsto f_i(x_{i+1}, x_k x) \quad (i=1, ..., k-1)$
 $x \longmapsto f_k(x)$

Since each of the mappings maps e into V, some neighborhood W of the identity is mapped into V by these mappings. Let

$$R_k = N \cup f_1(y_1) N \cup f_2(y_2) N \dots \cup f_k(y_k) N$$

Suppose $R_h \cap f(y_k x) N \neq \phi$ for all $x \in W$ and $f \in A$. Then

$$A_k = \bigcup_{f \in A} f(y_k W) \subset R_k R_k^{-1}$$

and $\bar{A}_k\bar{A}_k^{-1}$ is a compact A-invariant neighborhood of the identity. This is a contradiction. Hence, there exist $x_{k+1} \in W$ and $f_{k+1} \in A$ such that $R_k \cap f_{k+1}(y_k x_{k+1}) N = \phi$. The construction is complete. In the following two corollaries, we assume that $A \supset In(G)$.

Corollary 1. If G is a locally compact, totally disconnected group, then $B^A(G)$ is open if and only if G has a compact open A-invariant subgroup.

Proof. Suppose $B^A(G)$ is open; then there exists a compact A-invariant neighborhood N of the identity. Let K be a compact open subgroup of G contained in N. Then $\bigcup_{f \in A} f(K)$ is precompact A-invariant, and periodic. Hence, by Theorem A, it is contained in a compact A-invariant open subgroup of G. The converse is clear.

Corollary 2. Let G be a locally compact totally disconnected $\overline{FC_A}$ group and let K be a compact subgroup of G. Then K is contained in a compact open A-invariant subgroup of G.

Proof. Let $k \in K$. Then $\{f(k) | f \in A\}$ is precompact, A-invariant and periodic. Hence, by Theorem A, it is contained in a compact, A-invariant subgroup N_k of G. By Corollary 1, there exists a compact open A-invariant subgroup N of G. Clearly, K is covered by finitely many compact open A-invariant subgroups of the form NN_k . Their union is compact, periodic and A-invariant,

hence, again by Theorem A, it is contained in a compact A-invariant subgroup of G. This completes the proof.

References

- S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. band 246 (1971), 1-40.
- 2. T.S. Wu and Y.K. Yu, Compactness properties of topological groups, *Michigan Math. J.* 19 (1972), 299-313.