Isotone Map in Boolean Rings

By Young Bae Jun

Gyeongsang National University, Jinju, Korea

In [1], K. Iseki proved that a homomorphism of BCK-Algebras is isotone. In this paper, we apply this conception—isotone map—to Boolean ring. An element x of a ring is idempotent if $x^2=x$. A Boolean ring is a ring with a unit in which every element is idempotent.

Example. Let R be the set of subsets of a set S, we define addition and multiplication in R as follows:

 $X+Y=(X\cup Y)/(X\cap Y)=$ all elements in $X\cup Y$ but not in $X\cap Y$. (This is

called the symmetric difference of X and Y)

$$X \cdot Y = X \cap Y$$
 for any $X, Y \in R$

Then R is a Boolean ring.

A Boolean ring R has the following properties: (1) R has characteristic 2 (that is, r+r=0 for every r in R and (2) a Boolean ring R is commutative.

Let R be a Boolean ring with identity and M a unitary R-module. Define a relation \leq in M by $x \leq y$ iff there exist $r \in R$ such that rx = y for all $x, y \in M$.

The first purpose of this note is to show that the following theorem holds:

Theorem 1. The relation \leq in M is a partial order in M.

For $x \in M$, $Rx = \{rx \mid r \in R\}$ is an R-module. Then the proof of the following theorem 2 is similar to the proof of the corresponding theorem in ordinary ring theory and will be omitted.

Theorem 2. The map $R \rightarrow Rx$ given by $r \rightarrow rx$ is an R-module epimorphism.

The second purpose is to prove that the following holds:

Theorem 3. The map in theorem 2 is isotone.

The proof of theorem 1. Since R has an identity, 1x=x for all $x\in M$. So $x\leq x$. Let x and y be elements of M satisfying $x\leq y$ and $y\leq x$. Then there exist $r_1, r_2\in R$ such that $r_1x=y$, $r_2y=x$ and so $r_1r_2y=r_1x=y$. Also $r_1r_2y=r_1r_2x=r_2r_1=r_2y=x$. Hence x=y. Suppose $x\leq y$, $y\leq z$ for all $x,y,z\in M$. Then there exist $r_1,r_2\in R$ such that $r_1x=y$, $r_2y=z$. and so $r_2r_1x=z$. Since $r_2r_1\in R$, $x\leq z$.

The proof of theorem 3. Let $h: R \rightarrow Rx$ defined by h(r) = rx for all $r \in R$ and let r_1 and r_2

in R satisfying $r_1 \le r_2$. Then $r_1r_2 = r_2$, and so $h(r_2) = r_2x = (r_1r_2)x = (r_2r_1)x = r_2(r_1x) = r_2h(r_1)$. Therefore $h(r_1) \le h(r_2)$.

References

- 1. Kiyoshi Iseki, On Ideals in BCK-Algebras, Math. Seminar Notes, 3(1975), Kobe Univ.
- 2. Hiroaki Komatsu, Tomoko Matsuyama, A Characterization of Boolean Rings, Math. Japonica 25, No. 5(1980), 591-592.