Nucleophilic Displacement at Sulfur Center (XVII). Solvolysis of 2-Anthracenesulfonyl Chloride

황의 친핵성 치환반응 (제17보) 2-염화안트라센 술포닐의 가용매 분해반응

  • Hyong Tae Kim (Department of Chemical Education, Busan National University) ;
  • Soo Dong Yoh (Department of Chemical Education, Kyungpook National University) ;
  • Ikchoon Lee (Department of Chemistry, Inha University)
  • 김형태 (釜山大學校 師範大學 化學敎育科) ;
  • 여수동 (慶北大學敎 師範大學 化學敎育科) ;
  • 이익춘 (仁荷大學校 理科大學 化學科)
  • Published : 1983.06.20

Abstract

The kinetics of 2-anthracenesulfonyl chloride in methanol-water, ethanol-water, acetone-water and acetonitrile-water has been studied by electroconductometric method. For media in which water has the same mole fraction, the rate was greater in protic solvent than in dipolar aprotic solvent and it was greater consistently in methanol-water than in ethanol-water over the whole range of solvent composition investigated, while the two rates in acetone-water and acetonitrile-water inverted at about 0.9 of mole fraction of water. Both m value, susceptibility of rate to the ionizing power and n value, solvent participation number in the transition state were much smaller in protic solvent. These values and the activation parameters show that solvolysis of 2-anthracenesulfonyl chloride proceeds by $ S_N2$ mechanism.

물-메탄올, 물-에탄올, 물-아세톤 및 물-아세토니트릴의 2-성분 혼합용매 속에서 2-염화안트라센 술포닐의 가용매 분해반응을 전기전도도법을 써서 속도론적으로 고찰하였다. 물의 몰분률이 같은 혼합용매속에서는 쌍극자성 반양성자 용매에서 보다 양성자성 용매에서 속도가 컸으며, 물-메탄올 혼합용매에서는 실험 농도의 전체 범위에 걸쳐 물-에탄올에서 보다 항상 속도가 컸으나 아세톤과 아세토니트링의 경우에는 몰분율 0.9에서 속도의 크기가 뒤바뀌었다. 용매의 이온화 능력에 대한 반응의 감도를 나타내는 m와 전이상태에서의 물의 관여차수 n값은 모두 쌍극자성 반양성자용매에서 컸다. 이들 값과, 속도상수에서 결정한 활성화 파라미터로부터 2-염화안트라센 술포닐의 가용매분해반응은$ S_N2$ 메카니즘으로 진행된다는 것을 알았다.

Keywords

References

  1. Chem. Ber. v.84 H. Boeme;W. Schuerhoff
  2. J. Org. Chem. v.19 R.B. Scott;R.E. Lutz
  3. J. Amer. Chem. Soc. v.78 H.K. Hall, Jr.
  4. Austral. J. Chem. v.15 R. Foon;A.N. Hambly
  5. Austral. J. Chem. v.23 M.L. Tonnet;A.N. Hambly
  6. Austral. J. Chem. v.24 R. Foon;A.N. Hambly
  7. J. Korean Nucl. Soc. v.6 I. Lee;J.E. Yie
  8. J. Korean Chem. Soc. v.19 S.K. Lee
  9. Bull. Classe Sci. Acad. Roy. Belg. M.R. Goubau
  10. Rec. Trav. Chim. v.46 G. Berger;S.C.J. Olivier
  11. Arkiv Kemi Miner. Geol. v.14A I. Hedlund
  12. Acta Chem. Scand. v.5 E. Tommila;P. Hirsjarvi
  13. J. Amer. Chem. Soc. v.75 C.G. Swain;C.B. Scott
  14. Austral. J. Chem. v.14 F.E. Jenkins;A.N. Hambly
  15. Uspekhi Khim. v.32 R. V. Vizgert
  16. J. Chem. Soc. (B) O. Rogne
  17. Can. J. Chem. v.47 R.E. Robertson;B. Rossall;S.E. Sugamori;L. Treindl
  18. J. Chem. Soc. (B) O. Rogne
  19. Austral. J. Chem. v.24 M.L. Tonnet;A.N. Hambly
  20. J. Chem. Soc. (B) O. Rogne
  21. J. Chem. Soc. Perkin II O. Rogne
  22. J. Chem. Soc. Perkin II E. Ciuffarin;L. Senatore;M. Isola
  23. J. Chem. Soc. Perkin II L.J. Stangel;L. Senatore;E. Ciuffarin
  24. J. Chem. Soc. Perkin II O. Rogne
  25. J. Kor. Chem. Soc. v.17 J.E. Yie;I. Lee
  26. J. Korean Chem. Soc. v.17 W.K. Kim;I. Lee
  27. Tetrahedron Lett. E. Ciuffarin;L. Senatore
  28. J. Korean Chem. Soc. v.18 W.K. Kim;I. Lee
  29. J. Chem. Soc. Perkin II A.R. Haughton;R.M. Laird;M.J. Spence
  30. Zh. Prickl. Khim. Mosk. v.21 Z.G. Llinetskaya;N.V. Sapozhnikova
  31. C.R. Acad. Sci. USSR v.86 Z.G. Llinetskaya;N.V. Sapozhnikova
  32. J. Korean Chem. Soc. v.20 T. S. Uhm;I. Lee;J. R. Kim
  33. J. Korean Chem. Soc. v.21 T. S. Uhm;I. Lee;E. S. Lee
  34. Bull. Inst. Basic Sci, Inha Univ. v.1 I. Lee;I.S. Koo
  35. Helv. Chim. Acta v.10 W. Anderau
  36. Chem. Ber. v.37 R.E. Schmidt;H.P. Tust
  37. Helv. Chim. Acta v.11 P. Ferrero;A. Conzetti
  38. Chem. Ber. v.28 Heffter
  39. Phil. Mag. v.2 E.A. Guggenheim
  40. J. Org. Chem. v.43 H. Kwart;T.H. Lilley
  41. The Physical Chemistry of Electrolytic Solutions H.S. Harned;B.B. Owen
  42. Ber. Bunsenges. Phys. Chem. v.76 V.D. Geheb;N.F. Kasanskaya;I.W. Beresin
  43. J. Amer. Chem. Soc. v.82 J.B. Hyne
  44. J. Amer. Chem. Soc. v.84 J.B. Hyne;R.Wills;R.E. Wonkka
  45. J. Amer. Chem. Soc. v.70 C.G. Swain
  46. J. Amer. Chem. Soc. v.86 E. Grunwald;E. Price
  47. Quart. Rev. (London) v.16 A.J. Parker
  48. J. Amer. Chem. Soc. v.90 R. Alexander;E.C.F.Ko;A.J. Parker;T.J. Broxton
  49. Chem. Rev. v.69 A.J. Parker
  50. Ann. Rep. Prog. Chem. v.70 B.G. Cox
  51. J. Amer. Chem. Soc. v.91 G. Choux;R.L. Benott
  52. Kinetics and Mechanisms J.W. Moore;R.G. Pearson
  53. Coord. Chem. Rev. v.29 T.R. Griffiths;D.C. Pugh
  54. J. Chem. Soc. Perkin II M.H. Abraham
  55. J. Org. Chem. v.36 P. Haberfield;A. Nudelman;A. Bloom;R. Romm;H. Ginsberg
  56. Chem. Commun. P. Haberfield;A. Nudelman;A. Bloom;R. Romm;H. Ginsberg;P. Steinherz
  57. J. Amer. Chem. Soc. v.93 P. Haberfield
  58. J. Amer. Chem. Soc. v.95 R. Fuchs;L.L. Cole
  59. J. Amer. Chem. Soc. v.70 E. Grunwald;S. Winstein
  60. J. Amer. Chem. Soc. v.78 A.H. Fainberg;S. Winstein
  61. J. Chem. Soc. D.A. Brown;R.F. Hudson
  62. Can. J. Chem. v.55 R.K. Mohanty;R.E. Robertson
  63. J. Amer. Chem. Soc. v.79 S. Winstein;A.H. Fainberg;E. Grunwald
  64. Tetrahedron Lett. J. Kaspi;Z. Rappoport
  65. J. Amer. Chem. Soc. v.94 T.W. Bentley;F.L. Schadt;P.v.R. Schleyer
  66. J. Amer. Chem. Soc. v.98 F.L. Schadt;T.W. Bentley;P.v.R. Schleyer
  67. Acta Chem. Scand. v.19 A. Kivinen
  68. Acta Chem. Scand. v.9 E. Tommila
  69. Can. J. Chem. v.56 K.C. Westaway
  70. Rates and Equilibria of Organic Reactions J.E. Leffler;E. Grunwald
  71. Ann. N.Y. Acad. Sci. v.39 K.J. Laidler;H. Eyring
  72. Solvent Effects on Reaction Rates and Mechanisms E.S. Amis