Anionic Polymerization of 2-Pyrrolidone by Toluene Diisocyanate / KOH Catalysis

Toluene Diisocyanate/KOH 촉매작용에 의한 2-Pyrrolidone의 음이온 중합

  • Bal Jung (Department of Chemistry, Chungnam National University) ;
  • Ki Sung Kwon (Department of Chemistry, Chungnam National University) ;
  • Sam Kwon Choi (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Mun Sam Ryoo (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • 정발 (충남대학교 이과대학 화학과) ;
  • 권기성 (충남대학교 이과대학 화학과) ;
  • 최삼권 (한국과학기술원 화학과) ;
  • 유문삼 (한국과학기술원 화학과)
  • Published : 1983.02.20

Abstract

Anionic polymerization of 2-pyrrolidone was carried out by TDI (Toluene Diisocyanate)/KOH catalysis. The effects of TDI / KOH mole ratio, KOH concentration, temperature and time on polymerization were investigated. It was observed that the highest rate of polymerization and maximum conversion were obtained when TDI / KOH mole ratio was about 0.25. The maximum conversion and the highest viscosity were obtained when the concentration of KOH was 5 mole percent. It was also found that the rate of polymerization and inherent viscosity at $30^{\circ}C$ were higher than those at $50^{\circ}C$. The rate constant ($k_p$) of polymerization was determined by least square method; the values of kp obtained were $57.53{\ell}/mole{\cdot}min\;at\;30^{\circ}C$ and $52.36{\ell}/mole{\cdot}min\;at\;50^{\circ}C$, respectively.

TDI (Toluene Diisocyanate)/KOH 촉매작용에 의한 2-pyrrolidone의 음이온 중합에 있어서 TDI / KOH 몰비율, KOH의 농도, 온도 및 시간이 중합에 미치는 영향을 조사하였다. TDI / KOH 몰비율이 0.25일 때 중합속도가 가장 빠르고 전환율도 높았으며, 또 KOH의 농도가 5몰퍼센트일 때 가장 높은 전환율과 점도가 얻어졌다. 중합온도는 $30^{\circ}C$인 경우가 $50^{\circ}C$에 비해 전환율이 높았으며 점도도 높았다. 최소자승법으로 계산하여 구한 중합속도상수($k_p$)의 값은 $30^{\circ}C$일 때 $57.53 {\ell}/mole{\cdot}min$였고, $50^{\circ}C$일 때 $52.36{\ell}/mole{\cdot}min$였다.

Keywords

References

  1. U.S. Pat. 2,638,463 W.O. Ney;W.R. Nummy;C.E. Barnes
  2. C.A. v.47 W.O. Ney;W.R. Nummy;C.E. Barnes
  3. Bull. Chem. Soc., Japan v.31 H. Yumato;N. Ogata
  4. Chemtech E.M. Peters;J.A. Gervasi
  5. U.S. Pat. 2,739,959 W.O. Ney;M. Crowther
  6. C.A. v.50 W.O. Ney;M. Crowther
  7. Brit. Pat. 754,944 A. Hoffmann
  8. C.A. v.51 A. Hoffmann
  9. U.S. Pat. 3,148,174 S.A. Glickman;E.S. Miller
  10. C.A. v.61 S.A. Glickman;E.S. Miller
  11. Bull. Soc. Chim, France H. Sekiguchi
  12. U.S. Pat. 2,809,958 C.E. Barnes;W.O. Ney;W.R. Nummy
  13. C.A. v.52 C.E. Barnes;W.O. Ney;W.R. Nummy
  14. Brit. Pat. 908,772 Monsanto Chemical Co.
  15. C.A. v.58 Monsanto Chemical Co.
  16. U.S. Pat. 3,069,392 H.G. Clark;W.B. Black
  17. C.A. v.58 H.G. Clark;W.B. Black
  18. U.S. Pat. 3,135,719 D. Taber
  19. C.A. v.61 D. Taber
  20. J. Korean Chem. Soc. v.20 B. Jung;S.K. Choi
  21. U.S. Pat. 3,681,294 P.A. Jarovitsky
  22. C.A. v.77 P.A. Jarovitsky
  23. J. Appl. Polym. Sci. v.8 no.1 R.P. Scelia;S.E. Schonfeld;L.G. Donaruma
  24. Makromol. Chem. v.32 W. Griehl;S. Schaaf
  25. J. Appl. Polym. Sci. v.11 no.1 R.P. Scelia;S.E. Schonfeld;L.G. Donaruma
  26. Makromol. Chem. v.38 S. Chrzezonowicz;M. Wlodarczyk;B. Ostaszewshi
  27. Makromol. Chem. v.127 G. Falkenstein;H. Dorfel
  28. J. Polym. Sci., Pat. B v.3 S. Barzakay;M. Levy;D. Vofsi
  29. J. Korean Chem. Soc. v.24 J.H. Park;B. Jung;S.K. Choi
  30. Polymer (Korea) v.4 J.K. Yoo;B. Jung;S.K. Choi