Abstract
The crystal structure of metoclopramide, $C_14H_22ClN_3O_2$, has been determined by X-ray diffraction techniques using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with Mo $K\alpha$ radiation from a crystal with space group symmetry $P{\overline{1}}$ and unit cell parameters a = 7.500(1), b = 8.707(2), c = 13.292(2) ${\AA}$; ${\alpha}$ = 101.70(2), ${\beta}$ = 81.20(2), and ${\gamma}$ = $114.90(l)^{\circ}$. The sructure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.055 for the 1524 observed reflections. The bent overall-conformation of the molecule seems to be determined mainly by the bifurcated intramolecular hydrogen bond from the amide nitrogen atom to the methoxy oxygen and the amine nitrogen atoms. The crystal packing consists of the hydrogen bonds, ${\pi}-{\pi}$ interaction and hydrophobic interaction.