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The Added Mass and Damping Coeflicients of and the Excitation
Forces on Four Axisymmetric Ocean Platforms
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Abstract

This paper presents numerical results of the added mass and damping coefficients of vertical

axisymmetric bodies on or under the free surface. Also computed are the excitation forces on

these bodies due to an incident regular wave system. The numerical scheme employs a localized

finite-element method, which is based on the theory of the calculus of variations, The excitation

forces and moments on a submerged half-spheroid lying on the bottem are computed and comp-

ared with the results obtained by others. The agreement is good. Several specific types of float-

ing vertical axisymmetric platforms are considered for ten different wave lengths, in connection

with the design of an ocean-thermal-energy converter platform. The added mass and damping

coefficients, as well as the excitations, are presented. It is shown that simple strip theory gives

a good approximation of the sway (and pitch} added mass for a disc platform having a long

circular cylinder.

1. Introduction

Small oscillatory motions of an inviscid, incompr-
essible fluid with a free surface are described by a
boundary value problem governed by Laplace’s equ-
ation with a mixed boundary condition on the free
surface, a homogenecous Neumann condition on the
bottom of the fluid, and an appropriate radiation
condition at infinity. Forced motion or diffraction
problems of a floating or submerged body require
an additional boundary condition on the body surf-
ace as well, generally stating that the normal vel-
acity of the body and fluid are equal.

When we restrict the body geometry to be a body
of revolution with a generator parallel to the direc-

tion of the gravity force, the general threc-dimensi-
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onal problem reduces to a far simpler set of two-
dimensional problems. For this specific type of body
geometry, the added mass and damping forces con
tain only nine non-zera elements in the general 6 x6
matrices, Further, there are only four elements to
compute out of nine non-zero elements due to sym-
metry.

The present numerical method was previously used
with success by the present author. [1,2,3] Details
on this numerical method are not given in this
paper, since cne can find them in the above rcfere-
nces'.

A diffraction problem for a submerged half-sphe-
roid lying on the bottom is treated. The excitation
forces and moments are compared with the results

obtained by Rao and Garrison. [4] Agreement is

good.
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Also treated are four configurations of flating plat-
forms. These specific geometries are considered in
the design of a thermal-energy converter floating
in the ocean. Both forced-motion and diffraction
problems are solved for the four platforms over a
wide range of realistic wave lengths, from approxi-
mately 50 feet up to 5000 feet.

For the disc platform with a long pipe having a
closed end our numerical results for sway and pitch
added mass and moment are compared with those
computed from simple strip theory, which is strictly
two-dimensional. Agreement is good for all the wave
lengths considered here. Tt is of interest to note
that the sway and pitch added mass of this specific
platform stay nearly constant for various wave len-
gths. The same geometry is also considered with
the end of pipe open, for the case of the heave
forced-motion problem,in order to test the difference
in the added masses, for the two different conditions
at the end of the pipe. A simplified mathematical
model related to this model is also considered in the
heave forced-motion problem by assuming the attac-
hed pipe is infinitely long with an open end. For all
three models, the added masses and pitch moments
are compared.

As a test of these numerical results, the exciting
forces are also computed from the Haskind relations
by using the results of the forced motion problem.
Agreement is very good. Newman (5] shows that
the phase of the sway exciting force and of the
pitch exciting moment are the same. Our numerical
computations of phase are in good agreement with
Newman’s phasc relation.

All of the results for the excitation forces and
moments presented here are obtained by solving the

diffraction problems.

2. Formulation of the problem

We consider here the wave-body interaction of an
axisymmetric body fleating in or submerged under a
free surface. Such interaction may occur either as a
forced motion problem or as a diffraction problem.

In the former case, the wave motion is generated
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Fig. 1 Coordinate System

by some prescribed motion of the body; in the
latter, the body is held fixed but subject to the
excitation force due to an incident wave system. It
is well known that mathematically, these two prob-
lems are essentially identical, the only difference
being that the boundary condition on the body takes
different functional specifications.

We assume that the body has no forward transla-
tion velocity, the fluid is incompressible and inviscid,
and the flow irrotational. A linearized free-surface
boundary condition will be used. It is convenient to
introduce a eylindrical (Rfy) coordinate system,
with the y-axis pointing vertically upwards and the
R# plane in the undisturbed free surface. The R-axis
coincides with the x-axis when 6 is zero and with
the z-axis when # is #/2 as shown in Figure 1,
where the xyz coordinate system is rectangular and
right-handed.

Periodic oscillatory flow is described by the velo-
city potential

D(R,0,y,t)=Re {¢(R,8,y) e} 2.1
where ¢ is the frequency and ¢(R,4,y) is a comp-

lex spatial velocity potential, which must satisfy

~2 2
LA g BEent-
(2.2)
in the fluid. As the boundary conditions, we have
éy—vé=1 on y=0 2.2
¢n=Va on the body 2.0
¢n=0 on the bottom (y=-—5)
or y——co (for infinite depth)
(2.5)
WM R (p—imop) =0 (2.6)
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where v= and the wave number m¢ is determ-
ined from
y=my tank MQh (2 7)

When we consider an axisymmetric body whose
axis coincides with the y-axis, then the potential ¢

can be assumed to have a form
#(R, &y)zgosu"” (R,y) cos (kO+B) 2.8

Similarly, the normal velocity on the body can be

expressed as
Va= 2 0 cos (ho+p) (2.
=0

Here ¢'® (R, ) and v'® (R, y) are functions of only
R and y, and § is an arbitrary phase angle. With-
out loss of gencrality the phase angle g will be
taken to be zero here.

By substituting (2.8) and (2.9), into equations
(2.2) through (2.6), for 2=0,1,2, we have

)k

Fp® = {0:<71§,y§0 (2.10)
oM —yp® =0, at y=0 2.1D
M =M on S (2.12)
o® =0 on y=—Ah (2.13)
lim VR (0 o= 2. 14)

It should be noted that the reduced problem given
in (2.10) through (2.14) is defined only in two
dimensions, i.e., in the Ry-plane (R>0).

In the forced motion problem, we considered hea-
ve, surge and pitch motions which by symmetry are
sufficient to describe the complete six degrees-of-
freedom problem of an axisymmetric body. It suffices
to solve the above equations, (2.10) through (2.14),
for 2=0 for heave motion, and for k=1 for surge
and pitch motions. For unit-velocity rigid-body mo-
tions, the normal velocity on the body boundary So

is expressed as
o =mn, (2.15)
for heave motion
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v
W=p (2.16)
for surge motion, and
oV =7 X i 2.17)

for pitch motion. Here %= (n;, n2) is a unit normal
vector in the Ry-plane directed into the body and
#=(R,y) is the position vector on Sy is the Ry-plane.

In the diffraction problem, the incident wave pot
ential of unit wave amplitude is given as

_cosh mo(y-+h)
cosh moh

) (2.18)

Q== — £ gimex
0

where the wave is coming {rom z——c«(R=o0 and
g=x). It is convenient to express exp{imyx) in

the above equation in terms of Bessel functions:

gimor L ex()* Je(moR) cos k0, 2.19)

where

=1 for k=0,

exs=2 for k=1,
As in the casc of the forced-motion problem, it is
sufficient to solve for 2=0 to obtain the vertical
excitation force, and to solve for =] to obtain the
surge and pitch excitation forces. It is customary to
decompose to total potential into the known incident
potential and the diffraction potential. Then for the
diffraction potential, we simply specify the opposite
normal velocity computed from the incident wave
potential, on the body. By using (2.18) and(2.19),
the normal velocity on the body for the k-th mode
in the diffraction problem is given by

w _. aldig ‘:

L i

_dds (mBR) by h
g cosh moh m dR cosh iy +h)

+namodr (meR) sink my (y+h>] (2.20)
on Sy, for £=0,1,2, -

In addition we have a new boundary condition
along the y-axis (R=0) due to the reduction of the
three-dimensional problem to scts of two-dimensional

problems. This is
- at R=0, when k=0

2.z2n

and

W =0 at R=0, when £k>1 (2.22)
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3. Localized Finite-Element Method
and Numerical Procedures

As mentioned earlier, the theory of the calculus
of variations is used as the basis of the present
numerical scheme. The equivalence to the solution
of the original problem of the variational method
for the functional associated with the original prob-
lem is discussed in earlier papers [1,2,3) by the
present author.

Let us draw an imaginary line J (a vertical cire-
ular cylinder in space) in the Ry-plane which sepa-
rates the fluid into a region Di, which encloses the
body, and a region D as shown in Figure 2. Then
the original fluid domain D is divided into two sub-
domains, i.e., D; and D, with the common interface
boundary J. The boundary of sub-domain D is
denoted S;=Sr US;UyUSpUJ and the boundary
of the infinite sub-domain Dy is denoted Sa=JUSr:
USkUSs. Let ¢ and p; denote the potentials in
these sub-domains, respectively. Then we have

2 .
% -—5»;(1?(,9;1&* }]‘éz, 1T Q1yy=—0 in Dy

o1y~ vp1=0 on Sy
P1n=Un on Sy
¢12=0 on Sai
p12=0, £=0, .
61=0 B> on y (R=0J
3.0
and

. R B, .
& ,aﬂRw(\R(ﬂ:h’/ ~*‘*R.;50‘+503yy:0 in Dy

e T T T

Fig. 2 The Subdivision of the Localized Finite-
Element Domain and Infinite Sub-Domain.
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Pay—Vp2=0 on Srz
P20 — on Sm
gl_ll v R (par—imop;) =0 G2

In addition, we have
p1=¢2 and @it =0 ondJ 3.3

where the normal vector is taken outwards from
the fluid domain, for instance,

PLa=PIR, Q= —pzr on J
The juncture conditions (3.3) imply that the pote-
ntials ¢, and p; have unique solutions.

Let us assume that the most general solution, or
the solution space, of (3.2) is known and that ¢,
can be expressed in terms of the functions in the
solution space with coefficients to be determined
later. Then, by the approach given in Bai and Ye-
ung (3] for the construction of the associated func-
tionals for the above problem, the functionals are

given by:

Filpn @2 = H m%R (du +ol, '%—-%—'sof)dey

_ngmRmZ ds_jSo v"mds

+ j [ Rlpi— L p)puds, G4
, T
Elp oi = #R(shutelt "ﬁAsof)a’Rdy

-z 2 Js— )
o jsnR% ds jSO vap1ds

+XJR[(;02‘ PP 3 Qupunds

(3.5
Then, it may be shown that the solution of equat-
ions (3.1) to (3.3) is equivalent to the solution of
oF {gy, @2} =0, 3.6)

or
8Fy {1, 92} =0, 3.7
together with the essential condition (2.22) if K>1.
In the numerical procedure, the trial function for
@1 in Dy is chosen from a simple polynomial funct-
ion space, and the trial function for ¢: in D: (RZ=
Ry) is chosen from the solution space which satisfies
(3.2). Here the solution space is constructed from
the set of infinite discrete eigenfunctions. In order
to numerically find the first variation of the functi-
onal, (3.4) ar 73.5), which is zero, we simply requ

ire the first partial derivative of the functional with
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respect to the undetermined coefficients of the trial
functions to be zero, after the trial functions are
substituted in the functional.This procedure reduces
the functional equations to a set of lincar algebraic
equations. A procedure for treating an essential

boundary condition in the functional is discussed in

Bai.[2]
4. Numerical Results and Discussions

After the volocily potential has been obtained,the
pressure can be computed by Bernoulli's equation
p=—p®;=R. {igcpp™® (R,y) cos (kB)e ¢}
4.1)
where the static pressure has been neglected. Then
the added mass (g) and damping (2) coefficients are
defined as the integrals of the pressure along the

body boundary as follows:

et ——'%_L:npj‘ R nyds (1.2)
: im _ 5 Ro™ o
fig i =np oM (rxm)ds (4.3)
aki J,;'z,: © g,
panti 2 znpj 5, Ro® mds 4.5
Hee 1 Jﬂt:_.r{)j Rp® (rxmds (4.5)
per+i Jil~~:npj‘ Ro™ nyds (4.6

where g1 and 4;; are the surge added-mass and dam-
ping coefficients and g5 and Ay are the pitch added
moment and damping coefficients both due to surge
motion, gz and X are the heave added mass and
damping coefficients due to hecave motion, and pe
and Zg; are the surge added-mass and damping coeffi-
cients and pgs and Ag are the pitch added-moment
and damping coefficients both due to pitch motion.
Here ¢V in (4.2) and (4.3) is the potential for
surge motion, and ¢ in (4.5) and (4.6) is the
potential for pitch motion.

The cxciting forces can also be computed by

X=R.[ X\ +iXs)eitet-5/2} 4.7

Y=R (Y +iYy)eitot-a/1] (4. 8)

M=R.{(M\+iM,)e ilst-7/2} (4.9
where

X +iXo=rp0 [SD RpMmds (4.10)

Y1 iyzzznpoj&) Rp O nyds 4.1

M1+iM2:7rp0550 RpV (rxa)ds 4.12)

The potentials ¢ in (4.10) and (4.12) are the
same, and the potentials @ and " in (4.10)
through (4.12) are the total potentials, i.e.,the sum
of the incident wave potential (of unit amplitude)
and the corresponding diffraction potential of the
same mode (j=0 or 1). The exciting forces and
moment given in (4.10) through (4.12) can be
expressed in a slightly different form, in terms of
their magnitude and phase, i.e.,

Xi+iXo=Xoe™,

Y +iYy=Yoe's,

M -+iMy= Myels. 1.13
As mentioned earlier Newman (5] showed that the
phase as of the horizontal excitation force is equal
to the phase a, of the pitch excitation moment.

4.1 A Submerged Half-Spheroid on the

Bottom
In this sub-section a submerged hall-spheroid

lying on the bottom of a body of water of depth £
is considered, as shown in Figure 3. The equation
of the spheroid is

(B)+(-2-)=1 =25 aje=2 10

In the numerical computations, the localized finite-
clement domain was subdivided into 17 quadrilateral
elements with a total of 72 nodes. The exciting
forces and moment were computed for six different
frequencies. These results are compared with those

Table 1. In

Figure 4 we only present the present numerical

obtained by Rao and Garrison (4] in

reuslts since the comparison is very good. The CPU

computation time on an IBM 36CM 165 was about

37

A

Fig. 3 A Submerged Spheroid
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Table 1 The Excitation Forces and Moment on a submerged Half-Spheroid on the Bottom.(Here LFEM
denotes the present method and R&G denotes Rao & Garrison). 7 is the amplitude of the incident

wave.
Xo/pga’y [ Yo/ pga’y M,/ pga®y
moea S SO -
LFEM R&G J LFEM R&G LFEM R&G
0.19 1 0. 2589 0. 2609 j 3.0500 3.1061 0.1464 0. 1497
0.34 0. 4356 0.4396 ! 2. 8660 2.9263 0. 2471 0.2532
0.60 0. 6348 0. 63903 E 2.4010 2. 4656 0.3613 0.3726
1.07 0.6532 0. 6601 } 1. 4910 1.5366 0. 3886 0. 3988
2.29 0.2174 0. 2183 | 0.2703 0. 2790 0. 1576 0. 1609
3.39 0.0404 0.0448 “ 0. 0403 0.0518 0. 0455 0.0470
‘ e [
T — ot
Vs ~. N Tt [
7\ \\_
A N
| / \\ \ -
‘(" . ~ T i
— -

Fig. 4 The Excitation Forces and Moment on a
submerged Half-Spheroid on the Bottom. (7
is the amplitude of the incident wave)

1.9 seconds for each frequency.
4.2 Floating Axisymmetric Ocean Platforms
Four specific types of ocean platforms are treated
in this sub-section. The sketches of each model are
shown in Figure 5. Model Number 1 is a disc type,
Model Number 2 consists of a disc with a long pipe.
Model Number 3 is a spar type, and Model Number
1 is a modified disc type. All of the results for these
models are given in Figure 6 through Figure 17 and
in Table 2 through Table 4. For these models, all
of the hydrodynamic

coefficients are computed as

well as the excitation forces and moment for ten

frequencies; ¢=0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0,
1.2, 1.6, and 2.0 (1/sec).

As mentioned earlier, there exists a symmetry

relation between the

off-diagonal added-mass and

damping coefficients, i.e., the hydrodynamic coeffici-

Fig. 5 Dimensions of Axisymmetric Platforms
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1% e et
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.
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1’ \ y‘ \
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0’ \\Q\ \\
S~
N
" e o 1

Fig. 6 The Excitation Forces and Moment on the
Model #1. (throughout f{ollowing figures

R=1)
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Table 2 The Hydrodynamic Coefficients of Model #1 due to Sway Motion in the 0.6 to 0.9 frequency range.

o a 1[ pi/p i/ po s/ 0 Aie/ p@
0. 60000 1.822+6 5.450+6 8.375+7 —1.882+7
0.64114 1.341+6 4.814+6 7.251+7 5. 890-+6
0. 69813 9.565+5 3.997+6 5.095+7 2.567-+7
0.76621 7.575+5 3. 17546 2.6924-7 3. 6187
0. 80000 7.46543 2.801+6 1.481+4-7 3.780+7
0. 81338 7.270+43 2.440-+6 5. 145+6 3.772+7
0. 84908 7.3014-5 2.393+6 4.125-+6 3.707+7
0. 85486 7.335+5 2.346+6 2.8244 6 3.739+7
0. 86071 7.380-+5 2.300-+6 1.544-+6 RAVAVE Vi
0. 86367 7.400+5 2.276+6 ! 9.095+5 3. 70647
0. 86665 7.425+5 2.253+46 2.818-+5 3. 095 +7
0. 86724 7.430-+5 2.249+6 1. 56845 3.691-+7
0. 86784 7.435-+5 2.244+G 3. 20044 3. 688+7
0. 86811 7.440+35 2.024+6 —9.245--4 3.085-+7
0. 86904 7.145+5 2.235-+6 : ~2. 16745 3.6834-7
0. 87226 7.480+5 2.208+G | —8. 58045 3.606-+7
0. 89760 7.745+5 2.028+6 \ -5 3.584+7

ents computed from (4.3) and 74.6) are the same.
However, our numerical results for pg and e or
Xig and g1 given in Table 4 are obtained indepen-
dently. The agreements are good for all cases
between ss and gg, and g and Agr.

For Model Number 1, the

is treated for a wide range of frequencies

forced surge motion
in order
to identify one of the approximate frequencies which
gives pis=0 when =20.868 as shown in Table 2.

Table 3 shows the comparison of the heave added
mass and damping coefficients for Model Number 2
with different and conditions on the attached long
pipe. The results for the threc different pipe-end
conditions are very close to each other. These com-
parisons show that the hydrodynamic coefficients
of heave motion of model Number 2 are insensitive
to whether the pipe-end is closed, open, or infinitely
long and open.

It is well known that the added mass of a circular
.cylinder of unit length, moving in a direction nor-
the

cxample, a circular

mal to its axis in an infinite fluid, is equal to

For

cylinder of radius 535 feet in Model Number 2 with

displaced mass of {luid.

unit length has an added mass of

KRG BT F204% 4125k 19834 6F

FOVESY t:d (55) 2,

095 4+0

(4.15)

When we ignore the effect of the disc contribution

to the added mass in Model Number 2, the azdded
masses computed {from only the long pipe section
(2000 ft) becomes

m1=mp (555220005 (1. 9x 100 p (4. 16)

—100 .
pm:pe;:np(f)f))zj oo ¥y (21X 10%p (4 17)
-100

Yy (2. 93 10" p
—2100

tee =T (SS)zj
It is of interest to note that comparison of the app
given by (1.16) through (. 18)

with the numerical solutions given in Figure 10 show

(4.18)

roximate results

good agreement. It is not surprising that the agree-
ment is reasonable, since the major porticn of Model
Number 2 body is deeply submerged. In particular,
the pitch added moment sg and its coupling added
mass pet Stay almost constant with respect to the
different wave lengths, since the major contribution
to these added masses comes from the deeply subm-
erged part of the body.

the results of
Model Number 1 and of Model Number 2. The disc
part of Model Number 2 has the same dimensions

as Model Number ] (see Figure 5). The sway added

It is also of interest to compare
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Fig. 9 The Excitation Forces and Moment on the
Model #2 with closed end.

I Ty

1

| = N
| .
A

R

AN

RN

:fi\ ——

Fig. 11 The Damping Coefficients of the Model #
2 with closed end. -

Kwang June Bai

! l
| e e
i e A e
‘ P I S
IS
N e
)
[
Vo
e |
R
i N l
1A |
Y AN
P [\ A i
. - |
| .
|1 \ -
:\; ’ “\\ ~. }
i N
NN o i
, ,\{, o ‘»—7«‘?‘2 [ S, - T T e =
i p . S
\ - 1
[ // |
o ;
Y, ‘
il

Fig. 8 The Damping Coeflicients of the Model

# L
O - —
/"‘». e 3ot
B B R L
. -
. Fene
\ —ee— e 0.1
\ N e T T *_‘::,—.?l
N
N i
e - e
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Fig. 12 The Excitation Forces and Moment on the
Model #3.
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mass of Model Number 1 is approximately one order
of magnitude less than that of Model Number 2,
and the pitch added moment of Model Number 1 is
approximately one percent of that of Model Number
2, as given in Figures 7,8,10, and 11. These com-
parisons show that neglect of the disc part of Model
Number 2 is reasonable in equations (4.16) through
(4.18). On the other hand, the heave added mass
of Model Number | is very close to that of Model
Number 2 Figures 7,8, 10, and 11; this can be int-
erpreted in the sense that the contribution of the
attached pipe (with radius much smaller than that
of disc) to the added mass is insignificant for most
of the frequency range we tested. This result is

also consistent with the comparisons of the hecave

<

3
added masses with three different end conditions on
Model Number 2, given in Table 3.

The phase relations defined in (4.13) were also
examined. It can be easily shown that the phase as
of the horizontal excitation force is equal to the
phase a, of the pitch excitation moment,i.e., as=a,
or as=a,+n. A more detail tabulated results
be found in the

can
report {6]. The
excitation forces computed by using the Haskind

author’s earlier

relations were compared with the results obtained
by solving directly the diffraction problem. Agreem-
ent was good. However, the comparison is not incl-
uded in the present report. A typical subdivision of
these floating platform problems in the localized

finite element method is GO quadrilateral

8-node

Table 3 The Heave Added Mass and Damping Cocfficients of Model £2 with three different end

conditions on the attached long pipe.

Closed End [

Open End

” | Infinitely Long & Open End
‘: p22/p A2/ po ‘ po2/p Aoz po w22/ p 2e2/ po
0.2 2.606+7 8.846+0 2.669+7 8.697+6 2.556+7 8.5914-6
0.3 2.095+7 8.739+6 2.08947 8. 65946 2.110+7 8.425+6
0.4 | 1.790+7 5.786+6 1.783+7 5.701+6 181747 5. 6286
0.5 1.7394+7 2.946+6 1.73647 2.865+6 1.776+7 2. 818G
0.6 1.803+7 1.213+6 1.802+7 1.175--6 1.845+7 1. 15046
0.8 1.9444-7 1.25445 1.937+7 1.265+5 1.9774-7 1.244+5
1.0 2.007+7 8.280+3 1.998+7 8.709+3 2.046+7 8. 644+3
1.2 2.072+7 4.162+2 2.025+7 4.0994-2 2.074+7 1.045+2
1.6 2.095+7 1.759+4-1 ‘ 2.0474-7 7.463—1 2.097 7 1.069+0
2.0 2.101-+7 1.062+1 | — — 2.107+7 1.268--2

Table 4 Added Mass and Damping Coefficients of
Model #2 with closed End.

pei/p

a s/ P A/ po | 1/ po

0.2 {1.940=-10 1.368+48 | 1.918+10 1.358+8
0.3 1.924+10 2.001-4-8 | 1.901+10 1.858+48
0.4 1.916+4+10 8.040+7 | 1.895--10 5.435+7
0.5 1.921+10 3.145+7 | 1.901+10 1.08147
0.6 1.923+10 4.581+47 | 1.903+10 3.338+7
0.8 |1.9214+10 5.070-+7 | 1.901+10 4.731+7
1.0 1.924+-10 3.037+7 | 1.900+10 2.9424-7
1.2 1.945+10 1.473+7 | 1.905+10 1.431+7
1.6 1.946+10 3.608+7 | 1.908-+10 3.083+7
2.0 1.047+10 1.377+6 | 1.927+10 8.740+5
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Fig. 13 The Added Mass Coefficients of the Model
#3.
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Fig. 14 The Damping Coefficients of the Model
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Fig. 15 The Excitation Froces and Moment on

Model #4.
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Fig. 16 The Added Mass Coefficients of the Model
¥4.

elements with 217 total nodes.A typical computation
CPU time on CDC 6700 was between 10 seconds

and 25 seconds depending on the specific problem.

REFERENCES

1. Bai, K.J., “A Varatiional Method in Potential
Flows with a Free Surface,” Ph.D. Dissertation,
Department of Naval Architecture, University
of California, Berkeley. 1972.

2. Bai, K.]J., “A Localized Finite-Element Method
for Steady, Two-Dimensional Free Surfacc Flow
Problems, “The First International Conference
on Numerical ship Hydrodynamics,Gaithersburg,
Maryland, October 1975.

3. Bai, K.]. and Yeung, R.W., “Numerical Solut-
ions to Free-Surface Flow Prow Problems. “The

Fig. 17 The Damping Coefficients of the Model

(2]

G-

#4.

Tenth Symposium on Naval Hydrodynamics,
Office of Naval Rescarch, Cambridge, Mass.,
June 1974.

Rao, V.S. and Garrison, C.J., “Interaction of a
Train of Regular Waves with a Rigid Submerged
Spheroid,” Journal of Ship Research, Vol 20,
No. 4, December 1976.

Newman, J.N., “The Interaction of Stationary
Vessels with Regular Waves,” The Eleventh
Symposium on Naval Hydrodynamics, Office of
Naval Research, London, England, 1976.

Bai, K.J., “The Added Mass and Damping Coc-
fficients of and the Excitation Forces on Four
Axisymmetric Ocean Platforms.” David W.
Taylor Naval Ship Research & Development
Center, Bethesda, Maryland, Dept. Report,1976.

Journal of SNAK, Vol. 20, No. 2, June 1983



