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If we place a sample in a static magnetic
field all the proton spins will precess about
the field direction with the same angular fre-
quency. When we apply an RF pulse which
has the same frequency, Larmor frequency,
the RF energy will be absorbed by all the
protons and an FID signal would be produced
from all the resonating protons. It is fairly
easy to understand that the excitation of pro-
tons in a uniform magnetic field does not
give any information about the spatial distri-
bution of protons. An image on the otherhand
is a multidimensional representation of an
object in space. We realize that in order to

z

make images, we must somehow, encode the
spatial information into the FID signal.

" A brilliant solution to this problem was
provided by Lauterbur in 1973. He thought of
a way in which the Larmor frequency from
one point to another could be made different.
Thus by tuning to the right frequency we can
derive information from any spatial location
within the object. This is similar to listening
to a piano player without actually seeing him
/her. If we know where each piano key is
and have a good ear, by listening to the tune
we would know where the piano player’s hands

are. This also is an example of spatially cod-

2

(a)

(b)

Fig. 1.(a) static field along z direction, (b) a linear gradient field in the same direction.

<1983, 12, 1 A=
Department of Electrical Science Korea Advanced Instit-
ute of Science Seoul, Korea
*On leave from Departments of Radiological Science and
Electrical Engineering, University of California-Irvine.
#*Alge at Dept. of Radiology Columbia University.

ing the piano frequencies. Lauterbur thought
of adding a second magnetic field on top of
the uniform static field. The property of the

field is such that it increased as a function of
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distance linearly. Such a magnetic field is
known as a linear gradient field, Earlier, we

stated that the Larmor frequency is proporti-

By using a linearly varying gradient field.
we simplified the problem from three dimen-

sions to two dimensions, What is meant by

onal to the magnitude of the magnetic field. this is that initially, without the gradient
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Fig. 2. (a) Constant Larmor frequency due to static field,
(b) Linearly varying additional frequency,
(¢) Superposition of the two.

‘Thus, if the field varies linearly along, for

example, the z coordinate of a Cartesian coor-

dinate system, then the resonance frequency is
obviously dependent on the location of the
volume element of interest with respect to z.

In Figure 1(a), we see a static field of con-
stant amplitude in z direction. In Figure 1(b),
we observe a linearly decreasing gradient field
in z direction. The Larmor frequency as a
function of z direction is shown in Figure 2.

We immediately realize that by varying the
RF frequency we can tune in any plane which
is perpendicular to the z axis. This is shown
in Figure 3.

field, an RF pulse of Larmor frequency would

After rthe

have excited the whole volume.

S

Fig. 4. By using a frequency selective RF pulse in
the presence of a z gradient, excitation can
be confined to a slice thickness z.
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application of the z-gradient only a slice per-
pendicular to z-axis is excited. We can also
vary the slice thickness by varying the RF
pulse appropriately. The slice selection for a
transaxial cut through the head is illustrated
in the next figure.

Let us now demonstrate how we may ima-
ge a phantom consisting of a teflon block hav-
ing two water filled holes aligned with the
z-axis but with different locations with respect

to x (Fig. 5).
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Fig. 5. Imaging a phantom with a gradient.

In the absence of the field gradient(Gx=Gy
=Gz=0) both samples sense the same field;
the FID therefore consists of a single freque-
ncy (Fig. 5a). In the presence of a gradient
in the x direction, two samples sense different
fields resulting in an FID signal consisting of
two frequencies. In this case the excitation of
both samples is achieved by sending an RF
pulse which contains many different frequen-
cies. Out of all these frequencies only two,
corresponding to the Larmor frequencies at
the sample sites, are absorbed. The combinat-
ion of two frequencies made up the FID seen
in Fig. 5b can be explained with the aid of
following figure.

In Figure 6a, we have an FID with a cer-
tain frequency, in part b we have another
FID with a higher frequency, Since the sign-
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Fig. 6. Addition of two FID’s with different
frequencies.

als from both sites arrive simultaneously the
overall FID is a sum of the two as shown in
Figure 6c. We notice that the amplitude is
cancelled at the center due to interference of
the two FID’s. In Figure 6, we did not incl-
ude the overall attenuation due to relaxation
effects which is shown in Figure 7 b:
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Fig. 7. FID signal and its Fourier domain analog
for (a) a single frequency, (b) two differ-
ent frequencies.
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In reality, signals are collected from a mu-
Ititude of spatial locations and the FID is a
composite signal consisting of many different
frequencies, not just the two which can be
extracted by inspection, as in the phantom.

To determine individual frequencies in such
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situations one resorts to a mathematical ana-
iysis, carried out in a computer. The process
is called Fourier Transfrom, The FID repre-
sents the time evolution of transverse magn-
etization, the Fourier transfrom represents its
frequency distribution. This not only allows
extraction of the individual frequencies, hut
also their associated amplitudes, which are
proportional to the spin density at the parti-
culal spatial location. Figure 7 shows the free
induction decay and its Fourier transform
for the two signals in Figure 5.

In the first example of two water filled
cylinders, we arbitrarily chose their location
on the axis of the coordinate system. If we
wish to determine their positions for the more
general case where they are situated off-axis,
we must determine both coordinates x and y
for each sample. Let us assume the two cyli-
nders to be within the xy plane as shown in

Figure 8.

Fig. 8. Projection signals obtained from two water
samples.

The first thing to do is to select the spec-
ific z plane where we are interested. This is
done by applying a z-gradient field and send-
ing an RF pulse which has a frequency corr-
esponding to that plane. After that, a second
gradient field in any arbitrarily direction wit-
hin the xy plane is applied and the FID is
measured. This is shown in the next figure,

The projection shown in Figure 9 is the
summed magnetization in a direction which
is perpendicular to the field gradient Gx’. It

Fig. 9. Collection of projections in any arbitrary
direction,

was obtained by Fourier transforming the

FID signal measured along Gx’ similar to

Fig. 7.

If we rotate the gradient field Gx” with
equal angular increments about z axis we
would obtain a projection at each angle sim-
ilar to computed tomography (CT). By using
the mathematical reconstruction techniques
beveloped in CT,
the distribution of magnetization within the

one can then reconstruct

xy plane. The gray levels in each picture

element would carry information about T, T,
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Fig. 10. Direct Fourier transform imaging.
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or M, depending on what kind of excitation
mechanism was used. We have just described
projection-reconstruction technique of NMR
imaging.

There is another technique called direct
Fourier transform (DFF) method which does
not utilize the reconstuction mathematics. In
the DFT method the slice is again selected
by using a z-gradient and a selectiee RF pul-
se. Here, instead of rotating the read out
gradient Gx’ about the z axis we move it on

square raster as shown in Figure 10.

At the end of moving the gradient along x
direction, we obtain a two dimensional repres-
entation of the FID signal. By applying the
Fourier transform technique in two dimensi-
ons, we get a two dimensional {requency dist-
ribution of the object. But since we know
how frequencies vary spatially, we also know
how the magnetic properties of the ocject
being examined varies spatially.

There are many other variations of these
techniques applicable to three dimensions but
we will not go into these hers.



