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1. Introduction

Numerous static stability analyses have been
made of isotropic shells. When a cylindrical
shell is under axial compression, the small
deflection theory predicts buckling stresses
always higher than those found by experiments.
This discrepancy was studied by many aut-
hors. Large normal deflection patterned in
diamond shape was first advanced by von
Karman and Tsien [1]. The postbuckling
analysis made by them was based on the
Rayleigh-Ritz method and nonlinear strain-
Several authors have
discussed the dependence of computed buckling
load on the form of the assumed deflection

displacement relations.

function. Another suggestion that has been
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made to explain the lower buckling strength
found from tests is that the initial shape of
the cylinder deviates slightly from a perfect
circular cross-section. The effect of imperfec-
tions on the stability of a cylindrical shell
under axial compression was studied by Don-
nell and Wan [2] in 1950.

The
structure can be effectively increased by using

load-carrying capacity of the shell

stiffening elements or fibrous composites which
are essentially orthotropic. Proper selection of
the orthotropic properties can also lessen the
effect of imperfection on the stability of the
shell. Static analyses of orthotropic cylinders
have been made by Khot [3] and by Booton
and Tennyson [4] recently.

The study of dynamic stability of shell
structures has been a subject of interest since
1960. Roth and Klosner [5] studied the dyn-
amic stability of long, circular cylindrical
shells having initial imperfections subjected to
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time-dependent axial edge loads. Their analysis
showed that the dynamic buckling load for a
perfect cylindrical shell subjected to a step
loading was almost same as the classical static
buckling load and also that the initial imper-
fections played a dominant role in the reduction
of critical stress. In 1975, Tamura and Babcock
[6] also investigated the dynamic stability of
an imperfect circular cylindrical shell subjected
to a step loading in the axial direction. In
their analysis, the effect of axial inertia was
included in an approximate manner and a
significant reduction of dynamic buckling loads
compared to perfect shell was observed. Re-
cently, Zimcik and Tennyson [7] presented a
study on the stability of circular cylindrical
shells under transient axial impulsive loading
and compared their numerical results with
experimental data. Studies reported in [5, 6, 7]
deal with isotropic cylinders.

In the present study the dynamic buckling
of an orthotropic circular cylindrical shell
under an_axial step-load-is investigated using
the nonlinear Donnell-type shell equations of
motion. Instead of attempting to solve the
equations directly, an approximate_ six-term
deflection function having time-depenident coe-
fficients is assumed. After integration by
Galerkin’s method, six coupled, second-order
ordinary differential equations are obtained.
A numerical integration method is applied to
solve these equations as a function of seven
parameters which are related to loading, imper-
fection, geometry and orthotropy. A buckling
criterion is defined with regards to the sudden
increase of end-shortening and normal deflec-
tion. The buckling mode shapes are found to
change with initial imperfections and material
orthotropy. The effect of initial imperfection
on the stability is significant. A comparison
with some available experimental results is
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§ made.
2. Formulation

The nonlinear equations of motion are based
on the Donnell-type theory which is valid for
cylinders of moderate length. In the formula-
tion of these equations we assume: (a) large-
displacement in the normal direction, and (b)-
longitudinal and tangential inertia terms neg-
ligible.

N L ]

e

Fig. 1 Circular cylindrical shell.

Figure 1 shows the cylindrical shell geome--
try and coordinate system. Let (%, v) represent:
the displacement of components of a point on.
the mid-surface in the direction of the cylind~
rical coordinate axes (x,y) in the axial and.
circumferential directions, respectively and w-
is displacement in the inward normal z direc--
tion. Also, the stress and strain components-
are denoted by (0x, 0y, Txy) and (x &, Ter).
respectively.

Assume that the orthotropic symmetry axes:
of the material coincide with the coordinate-
directions, so that the in-plane stress strain.
relations may be written as

Ox Ex nyEy 0

Ty = '—'—'—‘1— VyxEx Ey 0
]._ VxyVyx

Txy 0 0 (1 — nyuyx>Gx>'~
€x
&y -
Vs

where E., E, and G., denote Young’s moduli
in the x- and y-directions and shear modulus,.
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respectively; v., represents the relative contra-
ction in the y-direction influenced by the
tension in the x-direction. It is noted that
E.wy=FE. @
The nonlinear strain-displacement relations are

Exzu,x+-%—(w,x>2+w,xwa,x

e,:v,y—w/R—%—%(w, W, W, 5
Viy=Uyy TV, x+W, W,y + W, sWo, y -+ W, yWo, x (3>

where the comma placed after a function de-
notes differeniation with respect to the coor-
dinate. In equation (3), w., (x,y) represents
the initial inward radial displacement. The
total deflection is w, and

W=wW+wW, @

The equation of motion in the direction

normal to the middle surface yields

Qs+ Qs 5+ (NuW, 2+ Nooy@, 5, 5+ (N>, »

+ Ny, ), -+ Ny / R=phw G)
where p denotes the mass density of the shell,
t is the time, and ( )=8( )/ot. In equation
(5), the transverse shear forces per unit

length are
Qx: - (wa, xx+nywy yy)yx
@y =— Dy, sx+ D310, 55),5 (6)

and in-plane stress resultants are
RI2
[N:, Ny, N.y) :S—h/z [0x, 0y T2yldz (7)

where
E. E,hn

T 20— o) T T 12U =)

D,,= %(vayx +D,vy) +2(nyh3/12) (8)

D, D,

When body forces and in-plane inertia are
neglected, the in-plane equilibrium equations
are identically satisfied when the stress resul-
tants are related to an Airy stress function
F (x,9,0) by
N.=hF,yy, Ny=hF,xx, Ney=—hF, ., (9
The equation of motion (5) can now be
written as

Dott, wnsF2D ey, xzyy +Dyth), yyyy
=h{F, sy, 25+ F, x(1/R+7,55)
—2F, .y, eyl —ph w
The compatibility condition
Caryy €y nx— Tz 29 = (W, 55)? — (W, W)y 55)

(10»

1
- F—w; 22 2W, 1y Wo,xy — W, xxlWo, 35

1y

—W,yyWo, xx
then takes the following form:
F, . (Ey/ny_ZVyx)E axyy T (Ey/Ex)

1
F, yyszs[(wy xy)z_ W, xxW, w‘_Fwy xx

+ 20, 25Wo, 5y~ W, xxWo, 55— W, ysWo, x]  (12)
Equations (10) and (12) are the governing-
equations of the present analysis for the two:
unknown functions w (x,,¢) and F(x,y,1).

3. Modal Analysis

To solve equations (10) and (12),
a six-term modal approximation for w, which.

we use-

represents the diamond-shaped buckling. This.
form of deflection is the same as that used
by Almroth [8] for a static analysis and
represents both the axisymmetric and asym--
metric components of the radial reflection..
The deflection function is
wlx,y, )=hla;($)cos(rx/A.)cos(zmy/A5)

+ax()cos(2rx/Ax)+as(#)cos(2zx/A.)

cos(2zy/2y)+a,($)cos(B3rx/ A, )cos

(87y/2,) +as(Dcos(4xx/A:) +as()] (13)
where the generalized coordinates a,(f) through
as(t) are functions of time where the gene-
ralized coordinates g,(¢) through a¢(f) are-
functions of time and 2. and A, are the half-
wave lengths in the axial and circumferential
directions, respectively. The boundary condi-
tions of displacements are disregarded for
cylinder of moderate length.

The initial imperfection of the shell assumes:

the same pattern used by Nimmer and Mayers.
[9], namely,
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w.(x, y)=hldcos(zx/2)cos(zy/2y)
+dycos(27x/2:)] 4
Substituting equations, (13) and (14) into
the compatibility equation (12) leads to the
following solution for F:
F=[b,cos(7xx/2A:)cos(3xy/2,)+bzcos
(6mx/A)cos(2my/A,) +bscos(5x/2x)
cos(3ry/2Ay)+bscos(5rx /A )cos(zy/Ay)
+bscos(zx /A cos(bwy/A,) +bcos
(4mx /2 )cos(2my/Ay) +bcos(Crmx/Ax)
cos(4zny/A,) +bgcos(3zx/A.)cos(3xy/A,)
+bscos(3wx /A )cos(zy/2Ay) +bycos
(zx/2cos(8xy/A,) +bycos(2nx/AL)
cos(2zy /25y +biscos(mx /A )cos(my/Ay)
~+biscos(67mx/Ax) + bracos(67y/2)
+biscos(dmx/As) +bigcos(4xy/2y)
+by,c08(2mx/2.) +biscos(2ry/2,)]

(—Ewg)—Loy+low (15)

In equation (15) ¢ and ¢ represent the
average axial compressive stress due to dyn-
amic edge loading and circumferential stress,
respectively. In the above equation, b; (j=
1, -+, 18) are functions of a:(¢), (1=1,2, -+, 6),
as well as geometric and material parameters.
‘The expressions for b; are given in the Appen-
dix as equation (Al). The geometric and
material parameters used in this study are
defined as follows:

a=2X,2/7*Rh, B=2,/2x,
and
k=FE,/E., pP*=(E,/G.y)—25x,
7?=D.,/D. (16)

The condition. for periodic circumferential

displacement v requires

Sim v,,dy=0

Using the second of equation (3), we have
for the periodic condition

SzﬁR [€y+w/R_'12‘(w17>2_wy7w0:7]dy=0

Applying equations (1), (7) and (9) trans-

forms it into

27R
[ [F, FosmvmFr) w0/ R=5 (.

0
— W, yWo, ,]dy=0 an

Noticing that the functions F, w, and w, alr-
eady have periodic terms in y, we find that
the condition (17) is satisfied by setting all
the nonperiodic terms to zero. Therefore,

q_m(al /2+ad,y —1—2(13—!——2 a4) s— V3T
(18

where
qR oR

=R TTER a9
and ¢ and ¢ are average stresses shown in
(15).
The unit end-shortening, d, can be obtained
as follows:

d= —%S:u, Ax=— %S:B—;x (Fyyy—varF, 2x)
—%(w, 2E—W, xw,,x]dx 2o

The substitution of equations (13-15) into
equation (20) yields

Ro/h= a+vqu+§ (a +2a,d,+8a3
+16:ds-+4a_+9a.+32 D
We rearrange equation (10), and let

. D,
Gw)=1w o

wxne T 2V PW, vxyy

2, 35v5] —%EF, 95, xx+ F, 2:(1/R

+w, yy) _ZE P xy] (22)

where G(w)=0 if w and F are exact. Upon

using equations (13), (14), and (15) into (10),
one finds the following form:

( )G( w)= (d 3 +C1a1+eld1+Nl>¢

da,

+< Ci,az +czaz+22dzTN2>¢2+< ar?

+caa3+N3> ¢3+( a;a; +€4a4+N4> b4
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(G ot ) g (G —h)
$et+(x, ¥) @3
In the above equation, ¢(x,y) is a function
containing terms of the products of ¢: (i=
1,...,6). Define
r={/R) (E./p)"*=nondimensional time
@D
The constants ¢, (m=1,...,5) and ¢;, e, de-
pend on 7, ¢ as well as on the geometry and
material parameters. The expressions N, are
the nonlinear terms of the products of a; and
b, where i=1,...,6 and j=1,...,18. These
lengthy expressions are not listed in this paper.
The functions ¢; are:
$r1=cos(zx/A)cos(my(2,)
go=cos(2zx/2.)
pa=cos@rx/2.)cos(2zy/Ay)
¢s=cos(3zx/2:)cos(3xy/Ay)
gs=cos(4xx /)
Ps=1 (25)
Equation (13) can be thus written as

w=h 3. @D
Galerkin’s method is applied by setting

* (7 Gwdgidxdy=0 (26)
§, S,

where i=1,...,6. The following orthogonality
condition is satisfied, according to equations
(23) and (25),

[ " g, Dy =0

After integration, equations (26) establish six
second-order nonlinear temporal differential
equations for a; (i=1,--+,6), which are gene-
ralized coordinates in deflection function w.
The six equations are given in Appendix as
equations (A2) through (A7).

The six temporal differential equations and
the algebraic equation (18) are solved simul-
taneously to determine the generalized coor-

dinates a; ({,=1,...,6) and g. The impending

buckling can be determined by the observatiom
of any sudden increase of the maximum
deflecton or of the end-shortening. Numerical
integration is made in accordance with the
initial conditions. The solution depends upon
seven parameters, namely: d;,d, (the initial
imperfection of the shell) in (14); @, 8 (the
parameters governing the geometrical confi-
guration) and 2% k2 (the orthotropic material
properties) in (16); and @ (the average axial.
compressive stress) in (19).

4. Numerical Analysis

The set of second-order nonlinear differential’
equations (A2-A7) plus twelve given initial
conditions defines the initial value problem of
which a mathematical solution is sought. These-
equations have been solved numerically as.
functions of the five parameters (a, 8, @, d),
dy) by use of the Runge-Kutta formula [10]
for a cylinder made of certian kind of orthot--
ropic material.

In order to investigate the effect of material
properties on the buckling of orthotropic cyt-
indrical shells, two orthotropic materials are-
selected for the numerical solutions. Calcula--
tions are also made on the isotropic cylindrical.
The:
material properties used are shown in Table-
1. The dynamic buckling loads are characte-
rized by using the stress parameter which is.

shell for the purpose of comparison.

the ratio of the nondimensional dynamic stress.
and the classical static buckling stress. The-
stress ratio is defined as

I'=¢/dcL @7
where 7 is defined in (19) and @c. is known.
as the smallest critical nondimensional static:
axial stress in the orthotropic cylindrical shell.
The criical nondimentional static axial stress:
for perfect orthotropic cylindrical shells is:
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Fig. 2 C(lassical static buckling stress versus
circumferential wave number.

.denoted as @c., and from [11]

= =R Ly 1 R
[t 2(r—vy)m=n? +k*n']
i (R2—2,ym=*
2Byt an/(rz—u,x)qu?n"f
8

‘where m=m=zR/L and o.: is the average static
axial compressive stress. Figure 2 show the

variation of the classical static buckling load

Table 1 Material properties of cylindrical shells,

Glass-epoxy [Boron-epoxy Is(osttr:é:;i)c
E: N/m* |5.17X10% | 27.58Xx10™ | 20.69X10"
(psi) | (7.5X10% (40%x10% (30x10%)
E, N/m* | 2.41X10* | 3,103X10" | 20.69X10*
(psi) | (3.5X10% | (4.5Xx10% | (30X10%)
G:, N/m? | 0.86X10% | 1.034X10"| 7.959X10"
(psi) | (1.25%109 | (1.5x10% |(11.54%10%
Vxy O- 25 0. 25 0. 30
Vyx 0.1167 0.0281 0.30
& 0. 4667 0.1125 1.0
r? 0.4403 0.1026 1.0
» 2. 5666 2.9438 2.0
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versus circumferential wave numbers, in which
the shell geometry is chosen as R/A=100 and
L/R=2, From Fig. 2 one can observe that
the critical circumferential wave numbers are
5 and 6 for the isotropic and glass-epoxy shells,
and boron-epoxy shell, respectively. The @c.

is the minimum value of ..
5. Buckling Criterion

The dynamic buckling load is determined
when that load causes a distinctly large rise
of the peak amplitude of the deflection [5].
The same phenomena are observed on the
end-shortening of the shell in the present
analysis. Typical variations of the unit end-
shortening and the maximum amplitude of @,
with the axial stress in a boron-epoxy cylinder
are shown in Figure 3, from which one can
see that the jumps of end-shortening and ma-

é
'hﬁ N (a'l_)max
r 12
d=d, +d,
a— (a1)mal {
10+~ 10+ ~— — End Shortening
08 Br
06 61
OAL -
I,=079
(3 - 0.0625)
0.2 2
=
ol o 1 1 1 -
o] 0.2 04 0.6 08 1.0

STRESS RATIO, I'= 5/5¢,
. .. . . JR
Fig. 3 Variations of the unit end-shortening -

and first generalized coordinate (a;)max
with stress ratio 7.
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ximum amplitude occur at the same load. In
-this study the ; mode is used for determining
the dynamic buckling stress, &, which is the
-critical value of @ defined in (19). The relative
dimprefection amplitudes are chosen as d;=4d,

[9]. The imperfection parameter d is defined .

as d=d,+d, The critical stress ratio, I'.,, is
‘the ratio of @,/0c1.
Buckling Mode
The actual buckling mode of a cylindrical
-shell under axial compression cannot be repre-
sented exactly with several finite integer
numbers of axial and circumferential waves.
In this study the geometrical parameters a
.and 8 are used for mode shapes of a cylin-
-drical shell under step loads. The geometrical
parameters « and 8 are related to the wave
lengths such as
a=R/(nh), B=2(mzR/nl) (29)
For determining the dynamic buckling load,
‘the minimum critical load is determined by
numerical results over a range of ¢ and B.
If one assumes that the classical static buckling
mode can be used as a starting point in the
numerical calculations,

0.

then the ranges of

0.3

SiResz RATIO, P 318,

Pt L L ——
22 03 c4 05 a6 (%3 (X3

B

Figure 4, Variation Of Stress Ratio With Ceometrica; Purameters d + 1.250]

Tig. 4 Variation of stress ratio with geometrical
parameters (d=1.250).

and 8 in the present study give
2.77<a<4.0 and 0.5236<5<0. 6283.

Typical results of this study are shown in
Figure 4 with the initial imperfections, d,=
1.0 and d,=0.25. From Figure 4 the critical
geometric parameter @, which is related to
the shell thickness and the number of circum-
ferential waves, can be represented with 3. 0.
However, the parameter 8 (29) can vary bet-
ween .4 and 0.6 according to the material
properties of the shell.
Dynamic Buckling Load

The dynamic buckling load of a perfect
isotropic cylindrical shell under axial step
load is generally higher than the classical
static bucking load of that shell. However,
the dynamic buckling load of a perfect
orthotropic cylindrical shell under axialp step
than
buckling load of the same cylindrical shell. In

load is lower the classical static

Figure 5, the variations of buckling stress
ratio with initial imperfections are shown. In
that figure, the dynamic buckling stress ratio
I'.. decreases with decreasing value of elastic

¥

. K
constant ratio, Z,

, as shown n Table 2, In

that table (o), is biuckling stress in a perfect

cylinder. The decreasing phenomena of the
.1-'

10} ———— Boron-Epaxy

— — Ghsspoxy

\ — = botopic

=3,/ &,

BUCKLING STRESS RATIO, I,

° 1 ! 1 " Y
(] 02 [ 06 08 19 12 1.

INITIAL IMPERFECT!ON PARAMCTER, d

Figure 5, Variations Of Dynamic Buckling Stress Wuth Initial impeciectians
Fig. 5§ Variations of dynamic buckling stress with
initial impertections.
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dynamic buckling stress parameter may be
related to the stress wave speed. Unlike the
isotropic shell, the orthotropic cylindrical shells
have wave propagation velocities smaller in
the circumferential direction than- that in the
axial direction. This difference of axial and
circumferential wave propagation velocities
may cause the weakening of resistance to the
buckling. Zimcik and Tennyson [7] showed
that the responses of anisotropic cylindrical
shell subjected to the axial impulsive loading
based on the theories of buckling analysis and
stress wave analysis were similar. Thus, one
can expect that the dynamic buckling load of
the shells is sensitive to the orthotropic mate-
rials properties.

Table 2 Dynamic buckling stress of perfect orthot-

ropic cylindrical shells under axial step load.

Material (Pcr)O: (t_no)/acL kZZEy/Ex
Boron-epoxy 0.87 0.1125
Glass-epoxy 0.97 0.4667
Isotropic 1.10 1. 0000

Initial Imperfection
The ratio of critical axial loads on an im-
perfect cylinder and on a perfect cylinder is
expressed as 4
P=3:/05 T30
where ., is the dynamic buckling stress of a

———— BoronEpoxy

— —— GlassEpox
o8- paxy

—=— lsotropic

06}

CRITICAL AXIAL STEP LOAD RATIQ P~ 0,70,

° L 1
0 02 04 (X3 [X) 1.0 12 14
INITIAL IMPERFECTION PARAMETER. 0

Fig. 6 Effect of initial imperfection on the critical
axil load.

perfect cylinder. The initial' imperfection of:
an orthotropic cylindrical shell under axiall
step load plays a dominant role in the reduction.
of dynamic buckling load as shown in Fig. 6..

One can also see that the smaller values of!
E,
E,

tivity. Similar results are observed in static:

Table 3 shows the:

influence of initial imperfection on the dynamic:

of the shell lead less imperfection sensi-

buckling analysis [3].

buckling stress as.

Table 3 The buckling stress ratio versus initial

imprefection,
In_itial imperfe- . o=
ction parame- | Materials a I
‘te, d=d,+d, 7o/ 0ct
Boron-epoxy| 3.0 | 0.4 0.247
1.25 Glass-epoxy | 3.0 | 0.55 0.198
Isotropic 3.0 0.6 0.220
Boron-epoxy | 3.0 0.5| 0.385
0.625 Glass-epoxy | 3.0 0.5| 0.375
Isotropic 3.0 05 0.420
Boron-epoxy | 3.0 | 0.5| 0.498
0.375 Glass-epoxy | 3.0 | 0.5] 0.510
Isotropic 3.0 0.5} 0.573
Boron-epoxy | 3.0 0.5 | 0.698
0.125 Glass-epoxy | 3.0 0.5 | 0:745
Isotropic 3.0 0.5 0.83
Boron-epoxy | 3.0 | 0.5 0.785
0. 0625 Glass-epoxy | 3.0 0.5| 0.847
Isotropic 3.0 0.5 0.950
Boron-epoxy | 3.0 | 0.5 0.870
0 (perfect) |Glass-epoxy | 3.0 | 0.5 0.970
Isotropic 3.0| 0.5 1.100

6. Conclusion

The six-term deflection function was used.
for the analysis of dynamic buckling of ortho--
tropic cylindrical shells under axial step loads.
This approximate deflection function represents:
dynamic behavior of the cylindrical shell agre--
eable with experimental results [7] at least:
for the perfect and isotropic case. The buckling:
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mode shape are found to vary with the initial
imperfections and the material properties of
the shells. The dynamic buckling stress is
significantly reduced due to the initial imper-
fections. The imperfection sensitivity of an
orthotropic cylindrical shell is lower than that
of the isotropic cylindrical shell.
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APPENDIX

b= 72a.a;

1= (74B4+212p2‘82+34k2> s

by = 32a,a;

2T(64B 14477+ 16RD)

b — 18(a28.+ a4d>5)

37 (5482250287 +-814k%) °

4(20105+9a304+205d;)
(BufS*+25p°3%+F%) 7

b= 364344
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