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A New Simple Technique for View Factor Computation

Sung Hwan Cho*
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Nomenclature

: Area

: Major or minor axis of ellipsoid in x-direction
: Major or minor axis of ellipsoid in y-direction
: Contour of integration

: Major or minor axis of ellipsoid in z-direction
: Factor of integration for area integral
FdAl_Az :

Radiative view factor from a differential

area to a finite area

: Radiative view factor between two finite

areas

: unit vectors in x,y, and z-directions, respec-

tively

: Directional cosines

: Number of Gaussian quadrature points

: Number of nodal points on contour C

: Normal vector to the surface of ellipsoid

: Position vector of a point on the surface of

ellipsoid '

* Member, Department of Mechanical Engineering,
Korea Military Academy.
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: Distance between dA; and a point on con-

tour C

: Scalar parameter defined by equation (4)
: Parameters defined by equation (A2)
: Gaussian weight of integration

: Space coordinates

Subscripts

: Body 1
: Body 2

1. Introduction

Many analytic and numerical studies om:

radiative view factors have been reported '1-
5]. These studies, however, are not applicable-

for general shapes. For example,

Chung and

Naraghi (3] developed a formular to compute:
radiative view factor from a sphere to an
axisymmetric body. Their method cannot be
applied to a non-axisymmetric body.
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In this paper a new simple numerical tech-
nique for radiative view factor computation
is developed. This technique, the finite line
integral method, is applicable for general
shapes and easily programmed for a digital

computer.
2. The Finite Line Integral Method

Radiative view factor from a differential
area to a finite area can be computed by the
contour integral developed by Sparrow [2].

Fun-a=, § G20l B2

+m, §c (xz—xl)dZE;r(ZZZ—zl)dxz

to Sgc (yz—yl)dxzzgfzxz—xl)dyz %))

The line of integration C is the contour of
A, which can be seen directly from dA,.
Symbols are given in Nomenclature.

By translation and rotation of coordinate
system, it is always possible to make the
origin of the coordinate system to be at dA,,
and z-axis coincides with the normal direction
to dA,, in which case x,=y,=2,=0; [;=m,
=0, and #;=1, Then equation (1) becomes

_ ydx—xdy
FdAx—Az_ §C 27z(x2+y2+22) (2)

Subscript 2 has been omitted in the right hand
side of equation (2) for convenience.
C
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Fig. 1 Finite line contour approximation,

Now the contour C is assumed to be com-
posed of a finite number of straight lines(Fig.
1). This is a similar approximation used in
the finite element method. Let two ends of a
straight line be P; (x, yi; z) and Piey(Xirg,
Yi+1, Zi+r), then equation (2) can be written as
Tty ©
The coordinates of a point P(x,y,z) on the

¥ Pl‘n
FdA1—Az:_Z

i=1J Pi

line P;P;.; can be written as

X X Xiv1—Xi
YI={ 9 |+8| yie1—y: ), 0<s<1 @
P4 Z; Ri+1— 2

Substituting equation (4) into equation (3),
and integrating it from s=0 to s=1, one ob-
tains the finite line integral.

[
Kier—Xi Vi
FdA1—Az:Z YiXivy i Vit
i=i orwd

fran(F5%) ~tan (7))
where

a=x"+y2+z8

b=x:(%ir;— %)+ Y:(Fir1—Y:) +2:(Zir1—20)

C:(xi+1_xi>2+<yi+1'—yi)2+(Zi+1—Zi)2

d= Jac—b?
Here the radiative view factor Fua,-a, is given
as a function of coordinates of IV end points
of straight lines which are assumed to make
the contour C. When z;<0 and/or z:+;<0, all
or part of the line P:P;., cannot be seen dire-
ctly from dA,. In this case the point on P:Pisy
for which z=0, can be found by interpolation,
and integration should be performed to that

point. .

3. Radiative View Factors Between Two
Finite Bodies

Radiative view factor between two finite
bodies, Fa,-4., is defined as (1]

FA;—A:=“;%1TS‘A1FdA1_A2dA1 (7)’
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Using values of Fus,-4. Obtained by equations
(5) and (6) and Gaussian quadrature, equation
(7) can be approximated as follows:

M
Faon=f g Fanyoa,w; ®

where M is the number of quadrature points.
The Gaussian weight w; depends on the posi-
tion of dA;, and f is a factor of integration,
which depends on the geometry of A,.

4. Error Analysis

Radiative view factors are computed by a
digital computer with seven digit single pre-
cision using equations (5) and (8), Equation
(5) is exact when the contour C is actually
composed of N straight lines, i.e., when A,
is a polygon or a polyhedron.
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Fig. 2 Relative errors in radiative view factors
from a differential area to a circular disk,

Fig. 2 shows the relative errors as functions
of the number of nodal points for radiative
view factors from a differential area to a unit
circular disk. Relative errors are smaller when
the distance from dA, to A, is smaller, for
which case the view factor Fya,-4, is larger.
Error decreases with the number of nodal

points, NN, as expected. When N>>100, relative
error is less than 0,1%. Roundoff error
becomes important when the number of nodal
points is excessively large.

When radiative view factors between two
finite areas are computed !by equation (&),
errors can occur from two sources. One is
from the finite line integral, the other from
the Gaussian quadrature. Tables 1 and 2
show radiative view factors between two par-
allel and perpendicular rectangles, respectively.
In these cases errors are due to the Gaussian
quadrature only, since the contour C is com-
posed of four straight lines. Numerical com-
putation is performed with M=8x8 and M=
16x16. Accuracy is seen to be excellent in
Table 1 for parallel rectangles even when M=
8%8. Errors are somewhat large in Table 2
when M=8X8. Accuracy in using Gaussiari
quadrature depends on the integrand, and in
general can be increased with the number of
quadrature points M.

Fig. 3 shows relative errors in radiative view
factors between two coaxial parallel circular
disks. Relative errors are not sensitive to the
number of Gaussian quadrature points in this
case.
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Fig. 3 Relative errors in radiative view factors
between two coaxial parallel circular disks.
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Table 1 Radiative view factors between two parallel rectangles,

Exact Present solution
X/H Y/H
solution M=8x8 M=16%16
1.0 1.0 0. 199825 0. 199825 0.199821
1.0 5.0 0. 359167 0. 359164 0. 359162
1.5 0.5 0. 146415 0. 146414 0.146411 ]
1.5 1.0 0. 252258 0. 252256 0. 252253 A, |
1.5 2.0 0. 364046 0. 364043 0. 364042 : i
2.0 0.1 0.035143 0.035143 0.035143 ! P -
2.0 0.5 0. 165269 0. 165269 0. 165266 Lo b v
2.0 1.0 0. 285875 0. 285873 0.285872 ; : : X
2.0 2.0 0. 415253 0. 415249 0. 415250
5.0 0.5 0. 205860 0. 205861 0. 205856 ! S
5.0 2.0 0. 529931 0. 529928 0. 529927
5.0 5.0 0. 690245 0. 690241 0. 690224
10.0 0.5 0. 220810 0. 220799 0. 220806
10.0 1.0 0. 386382 0. 386370 0. 386379
10.0 2.0 0.573376 0.573367 0.573372
10.0 5.0 0. 753627 0. 753624 0. 753600
Table 2 Radiative view factors between two perpendicular rectangles,
Exact Present solution
X/W Y/wW
solution M=8x8 M=16X%16
1.0 1.0 0. 200044 0. 200044 0.220042
1.0 5.0 0. 246899 0. 246900 0. 246897
1.5 0.5 0.102713 0. 102686 0. 102710
1.5 1.0 0. 148216 0.148188 0. 148212
1.5 2.0 0. 182863 0. 182836 0. 182859
2.0 0.1 0.021878 0. 022089 0. 021876
2.0 0.5 0. 078650 0.078612 0.078647
2.0 1.0 0.116426 0. 116387 0. 116423
2.0 2.0 0. 149300 0. 149261 0. 149296
5.0 0.5 0.032232 0.032158 0. 032227
5.0 1.0 0. 049380 0. 049301 0. 049374
5.0 2.0 0. 068095 0.068017 0. 068089
5.0 5.0 0. 088102 0. 088024 0. 088096
10.0 0.5 0.016175 0.016210 0. 016164
10.0 1.0 0. 024921 0. 024776 0. 024910
10.0 2.0 0. 034910 0. 034757 0. 034899
10.0 5.0 0.047768 0. 047615 0. 047756

5. Radiative View Factors From a Unit
Sphere to an Ellipsoid

In order to show the capability of the finite

line intgral .method, radiative view factors
from a unit sphere to an ellipsoid are com-
puted. Chung and Naraghi[3) have reported
radiative view factors from a sphere to an
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axisymmetric ellipsoid, Z.e., a spheroid. Their
method, however, cannot be applied to non-
axisymmetric ellipsoids.

In order to check the accuracy of the finite
line integral method, radiative view factors
between two spheres are computed, and the
results are compared with reported values of
Ref. [3]. Axisymmetry is used in the nume-
rical computation, where view factor from a
quarter of sphere 1 to a half sphere 2 is

T T

2 y2 (z-l-c)

X 2
Ellipsoid -a—2+—Ei+ Ik

Sphere x2(> y2+ 2=t

tumbers on the curves
cre values of axb.

Fig. 4 Radiative view factors from a unit sphere
to an ellipsoid contacting each other,
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Fig. 5 Radiative view factors from a unit sphere
to an ellipsoid

actually computed, and then the result is
multiplied by 2. Accuracy is seen to be excel-
lent from Table 3. Detail of computing the
coordinates of nodal points on contour C is
given in Appendix.

Fig. 4 shows radiative view factors from a
unit sphere to ellipsoids in contact with the
sphere. Fig. 5 shows view factors from a unit

Table 3 Radiative view factors between two spheres, F Ar-hg.

Ref. (3] N=80 N=80 N=41 N=4]1

R./R, S/R;, ef. [ Me16 Meg Me16 Mg
0.1 0.0 0.29930E -2 0.29926 E -2 0.29954E -2 0.29913E-2 0.29941E -2
0.9 0.67028E -3 0.67028E -3 0.67024E-3 ‘0.66977E -3 0.66973E-3
3.9 0.10103E-3 0. 10099E -3 0. 10096 E -3 0. 10093E -3 0. 10089E -3
8.9 0.25063E -4 0.25044E -4 0.25041E -4 0.25031E-3 0.25027E -4
0.2 0.0 0.93167E -2 0.93155E -2 0.93169E -2 0.93116E-2 0.93130E -2
0.8 0. 26892E -2 0. 26884 E -2 0.26891E -2 0.26864E -2 0.26871E-2
3.8 0.40425E -3 0.40414E-3 0.40423E -3 0.40383E-3 0.40392E -3
8.8 0.10026E -3 0.10022E-3 0. 10018E -3 0.10015E-3 0.10011E-3
0.5 0.0 0.34351E-1 0.34347E-1 0.34346E-1 0.34335E-1 0.34334E-1
0.5 0.17147E-1 0.17144E-1 0.17140E-1 0.17132E-1 0.17129E-1
3.5 0.25322E -2 0.25312E-2 0.25303E -2 0.25294E -2 0.25284E-2
8.5 0.62697E -3 0.62680E -3 0.62704E -3 0.62631E-3 0.62656E -3
1.0 0.0 0.75587E -1 0.75578E-1 0.75579E -1 0.75554E -1 0.75554E -1
1.0 0.29590E -1 0.29584E -1 0.29582E -1 0.29564E -1 0.29556 E -1
3.0 0.10211E-1 0.10209E-1 0.10205E -1 0.10201E-1 0.10197E-1
5.0 0.51555E -2 0.51542E-2 0.51554E-2 0.51503E-2 0.51515E -2
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Fig. 6 Radiative view factors from a unit square
to an ellipsoid.

sphere to various ellipsoids as functions of
space between the two bodies. Numbers on
the curves are values of major and minor
axes of the ellipsoids. Values for axisymmetric
ellipsoids, a=b, are compared with Figs. 11
and 12 of Ref. [3]. Errors are hard to detect
from the scale shown.

Radiative view factors from a unit square
to an ellipsoid are also given in Fig. 6.

6. Conclusion

A new simple numerical procedure is devel-
oped to compute radiative view factors from
a differential area to a finite area. This tech-
nique can be easily programmed for a digital
computer. Basic concept used in the finite line
integral method is to assume the contour of
receiving body to be composed of finite number
of straight lines. This technique is exact if
the receiving body is a polygon or a polyhe-
dron.

Gaussian quadrature is used for radiative
view factors between two finite bodies. Several
numerical examples are given to check the
accuracy of the method. Accuracy depends on

the number of nodal points, and can be incre-
ased by increasing the number of nodal points.

Radiative view factors from a unit sphere
to ellipsoids are obtained. For axisymmetric
ellipsoids, the results agree well with reported
values of Ref. [3). Radiative view factors
from a unit square to ellipsoids are also given.
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Appendix

Contour of integration for radiative view
factor from a differential area to an ellipsoid

Radiative view factor from a differntial area
at the origin of the coordinate system to an
ellipsoid

(x—7.)° (y—r,)2 (z—r.)%
a? + be + c?

=1
(A



102 Sung Hwan Cho

where 7.<c, is considered. The contour of
integration C is composed of the points, P, on
the surface of the ellipsoid, where normal
vector to the surface is orthogonal to the
position vector OP.
Using two parameters # and v, equation
(Al) can be rewritten as follows.
X=rx+a sin # cos v
y=v,+b sin u sin v
Z=7r:+C COS #
where 0<u<rw, 0<v<2z. An outward normal
vector to the surface of the ellipsoid is

(A2)

— sinu# cosv ., sinu sinv .
N= D J

¥ + 7y
s a9

Position vector P of a point on the surface of
the ellipsoid is
P=(r.+a sinu cos )i+ (r,+b sinu
sinv)j+(:+c¢ cosu)k (AD
From the condition N-P=( at a point on the

contour C, following equation is obtained.

Vs ¥y . . ¥a
( p cos v+ ) smv) sin #+- c cos u
+1=0 (A5

For a given value of v, the value of # can be
obtained from equation (A5).

sin u={—g+/g2+( 7';22 -1 )<g2+
T ) a0
where
g:—rci‘—cos v+ 7})’ sin v (A7)

The condition sin #=>0 for 0<<u<zr has been
used in equation (A6).

Vales of # and v are substituted into equ-
ation (A2) to obtain coordinates of nodal
points on C. When normal vector to the
differential area is different to z-direction,
rotation of the coordinate system is applied toe
obtain new coordinates of the nodal points.



