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1. Introduction

Many engineering structures are exposed
to excitation of fluid flow in many forms.
Strong oscillation of the structure can be exc-
ited when vortex shedding frequency coinci-
des with its natural frequency of vibration.
This usually occurrs over the relatively small
range of the flow velocity. For the flow vel-
ocity greater than that of the vortex-excited
vibration, there is another form of flow-ind-
uced vibration termed “galloping oscillation”.

This form of self-excited oscillation results
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from unsteady aerodynamic force acting on
the structure when its motion Interacts with
the flow field. The aerodynamic force prope-
rties are such that aerodynamic lift forces
induced by a small structural motion act in
the direction of the motion, thus producing
negative damping type forces. This type of
aerodynamically induced vibration has long
been observed in such structures as tall bui-
Idings<'~®, slender towers and stacks®, tran-
smission line®, circular saw, and turbine
disc and blade‘.

In recent years considerable research works
have been done to identify the instability
mechanism through analytical and experime-
ntal works!~9. Due to these works the insta-
bility mechanism and phenomenon have been
identified but suppression method to circum-
vent this problem has not yet been fully inve-
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stigated. One possible approach to stabilize the
flow-induced instability is by the use of activ
control system which is designed to sense the
structural motions and to generate a corrective
control force acting on the structure. This type
of the active control concept has been applied
to action control of building structures subje-
cted to stochastic windforce excitationt®1D,
In these studies the wind force has been ass-
umed to be independent of the structural mo-
tion, so that the interaction phenomenon bet-
ween the structural motion and wind flow has
not been created. As compared with this situ-
ation, the galloping oscillation results from
the interaction between the two and thus exh-
ibits nonlinear oscillation characterisaics due
to a nonlinear relationship between the angle
of attack and the aerodynamic force: As the
structural motion occurrs, this changes the
instantaneous flow direction relative to the
structure i.e. angle of attack, thus resulting in
variation in the aerodynamic force. This gal-
loping mechanism often leads to destructive
vibration which has been observed for many
yvears from many of engineering structures.
In this study an active control of a vibratory
system exhibiting such galloping oscillation is
considered. A design procedure for optimal
constant feedback controller is presented to
suppress the vibration and based upon the
minimization of a quadratic performance repr-
esenting the system vibratory energy.

2. Optimal Controller Design

Fig. 1 shows the geometry of a vibrating
structural cross section in a uniform flow.
When an elastic structure moves with velocity
% perpendicular to a two dimensional flow
field of velocity, v, the aerodynamic force

acting on the body is generated by relative
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Fig. 1 Structure section and flow geometry.

flow velocity v,.. This lateral force is nonl-
inear function of angle of attack e=tan-! /v

and given by
=3 Co(@)phly? (D

where C,(a) is the lateral force coefficient, p
is the air density and # and / are the side
length and axial length of the section, respe-
ctively. The force coefficient is usually desc-
ribed by a power series®,

Ciw=a(L)-af L) -a(4-) @
where terms beyond (%)5 are neglected.

Using the same dynamic model as used in
references¢!~®, the differential equation gove-
rning the oscillation is

mb&—l—cx—I—kx:—;— Cophlvi+u 3)

where in this model the system was assumed
to be a single degree of freedom and nonaero-
dynamic damping viscous. In the above x is
the vibration displacement, m is the vibrating
mass, ¢ is the damping coefficient, # is the
spring coefficient, and # is the control force
to be acted upon the structure. Introducing the

dimensionless quantities,

X L, C _ ph¥

X_h’ﬂ*me’”_Zm’
u v

U= hmw?’ V= wh » c=oi

where o is the system natural frequency, and

defining state variables x,=x and x,=#%, equ-
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ation (3) can be written in the state variable
form:

£1=X3

st (V=2 e (2 )

~(F% ) +u o)

‘Equation (4) is of the well-known form of a
weakly nonlinear system due to smallness of
the term %a, and thus represents a nonlinear
control system. When the influence of terms
containing higher degree of x,=4 vanishes, the
character of a vibratory motion depends only
on the sign of the coefficient at x, i.e., on
the sense of the total damping. If the coeffi-
cient is positive, the zero position x=0 is
stable, If it is negative, the zero position is
unstable and Eq. 4 describes self-excited oscil-
lations, starting when

=28
V> VCTI! val

wheresV.,,:; denotes the critical flow velocity.
If the above condition is fulfilled, Eq.4 descr-
ibes self-excited oscillations. The vibration
amplitude in this case can grow infinitely
if the higher order terms x® and x° in Eq. (4)
are neglected, However, if these nonlinear
terms are included, the amplitude can be finite,
reaching a steady amplitude called “limit cycle
oscillation amplitude”. It can be shown that
due to the nonlinearity a finite steady ampli-
tude of limit cycle oscillation occurrs and this
steady amplitude depends primarily upon the
wind velocity, the aerodynamic coefficient and
damping factor. As the wind velocity increases,
the steady amplitude curve approaches an
asymptotic straight line

Asteasy=kV ©))
where k is a constant. This indicates that the
amplitude of steady state oscillation increases

with increasing flow velocity. Another feature

of the weakly nonlinear system is that the
oscillation amplitude grows very slowly towa-
rds that of the steady state. The phenomena
stated above are characteristic of a weak]y
nonlinear vibratory system. The analysis of
this system can be done by employing Bogoli-
ubov and Krylov method and can be found in
the references(1)~(3).

A natural goal for the vibration suppression
is to minimize the system energy with smaller
control force. A quadratic performance index
for this purpose may be chosen as

=15 Qe+ Unae ®

Where ¢f is a specified final time, and the
weighting matrix @ is chosen to have the fol-
lowing form:
@=diag {1,1}

The first terms in Eq. (6) represent the pote-
ntial energy and the Kkinetic energy of the
system, and the second term in the performance
index is included to constrain the control force
in minimizing the vibration energy.

This nonlinear regulator problem is not easily
solved and normally leads to an open-loop con-
troller which is often ineffective for a practi-
cal implementation. One popular approach to
this problem is to specify a fixed feedback
configuration and to optimize with respect to
the free parameters, retaining the nonlinear
system description.

If a state variable feedback configuration is
used then the control law is given by

U=—kx=—[kyk]x D
where & are a constant feedback gain vector.
The problem is then to find the gain parameters
which minimize the performance index in equ-
ation(6). Several works discussing the optimi-
zation technigue to obtain the optimal feed-
back gain include quasilinearization method®,

the method of successive substitutions®,
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Newton-Raphson method‘*? and gradient mini-
mization method*®. Although these numerical
solution methods provide an efficient base of
computing the optimal parameter, subroutine
ZXMIN based on the Harwell library VAIOA“®
appears to yeld fast convergence rate and to
require small data-storage: This routine mini-
mizes a function of N variables using a quasi-
Newton method. In the following simulation
study this routine is used to compute the opt-
imal feedback gain k; and k, from equations

@~.
3. Control Results and Conclusions

The pertinent data of a flow-induced struct-
ural model given in equation (3) were taken
from reference®. The experimental test model
used was made of a 2.54 cm by 2. 54 cm alum-
inum square section. These data are as follows:

$=0.00152, »=0.000922, w=>55.6rad/sec.,
and the aerodynamic force coefficient obtained
from wind tunnel test are:

a;=3.11, a,=16.8, a;=208.
To compute the optimal feedback gain &, and k,,
the control law in (7) was substituted into equ-
ations (4) and (6). The final time 7f=10 was
used for the optimization and integration of the
equation (4) was done using the fourth order
Runge-Kutta method with step step Arz=0.1
and with the initial condition x,(0)=0. 01 and
xz(0)=0.

Fig. 2 shows responses of the structural mo-
tion without the control force input. In Fig.
2 uncontrolled response is illustrated for two
different flow velocities but for the some initial
conditions ¥=0 and %=0.01 Fig. 2 (@) is the
case of V=2.0, while Fig.2 () that of V=
3.0. These wvelocities are much higher than
the critical velocity V..:=1.06!: The V.. is
defined as the flow velocity above which the
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Fig. 2 Uncontrollecl response.

structural motion becomes unstable. Regardless
of the flow velocity, the amplitudes grow very
slowly towards some steady state amplitudes of
limit cycle oscillation. Another observation is
that, increasing the flow velocity from V=2 to
V=3 the steady state amplitude is also incre-
ased. As discussed before, these behaviors are-
characteristic of the weakly nonlinear system.
Figures 3(a) and 3(&) compare the controlled
responses for aribitrary gain values k;=1.414
and k,=0.474 and for the optimal gain values,
respectively: The optimal values were obtained
to be £,=0.474 and k,=1.414, whereas the
arbitrary gain values were chosen as £,=1.414
and k,=0.474 : The k, value was arbitrary
increased from the optimal one k;=0.474 and
the %k, value was also arbitrary decreased from
the optimal one k,=1.414. The nonoptimal
response shown in Fig. 3 (@) shows stable but
oscillating response at initial stage, and the
oscillation lasts up to nondimensional time z=
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Fig. 3 (a) Nonoptimal response at V=3, 0
(b) Optimal response at W=3,(
(c) Optimal control force input

15. As compared with this the optimal control
force input effectively suppresses otherwise
unstable motion of the structure within a very
short time. It requires approximately one z=5,
which corresponds to 0. 09 sec. The same trend
has been found even for much higher flow
velocity, VV=10. This indicates that with the
optimal control the structural motion can be
stabilized even when the low velocity is incre-
ased up to the value times higher than the
critical speed. In Fig. 3(¢) the corresponding
optimal control input force in shown. Maximum
input force is approximately U=, 008 which
corresponding optimal control input force in
shown. Maximum input force is approximately
U=0.008 which corresponds to . 35N for the
experimental model considered in Reference 1.

Variation of the optimal feedback gains with
the flow velocity was investigated. The optimal
values have been found to remain almost unc-
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hanged regardless of the flow velocity, although
the results are not shown here. This indicates
that, although the nonlinear aerodynamic force
causes the unstable motion, it is small as com-
pared the optimal control force. Thus, it is
expected that the flow velocity does not alter
the feedback gain appreciably. This result
makes the feedback implementation problem
easier. since varing the feedback gain during
the controlled period is not an easy problem in
practical situations, if the gains depend upon
the flow velocity.

Based upon the simulation results presented
above, it can be concluded that active control
force applied to bluff structures interacting
with the flow can stabilize otherwise unstable
motion and that optimal choice of the controller
gain parameters leads to the effective suppre-
ssion of the unstable motion within a very
short time. The optimal feedback gains are
found to remain almost unchanged for a wide
range of flow velocities but these are expected
to be initial condition dependent. It is noted that
the control force can be adjusted to a desired
magnitude by varing the input weighting para-
meter in the performance index.
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