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1. Introduction

The use of active control to reduce vibra-
tions of mechanically flexibe systems has
received considerablle attention in recent
years. Several studies discussing this class of
-control problem includies modal control of
plate bending vibration‘?, feedback control of
circular saw vibration®, active control of a

spinning flexible spacecraft® %, control of civil
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engineering structures*®, and active control
of a simply supported beam‘”. Active control
of these flexible systems requires feedback
control of infinite dimensional vibration modes,
but to design an implementable control system
a finite dimensional controller should be con-
sidered. This produces several aspects of
controller design problems which complicate
the design decisions. These include truncation
and the resulting spillover problem¢, uncer-
tainty in dynamic modelling and modelling
error®%19  and controller implementation®: 10,
Detailed surverys on these problems have
been given in the referencest2 13,19,
Truncation method which includes a finite
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number of terms for the dynamic modelling
has been extensively used as the only feasible
A basis for
this approach is that higher frequency modes

alternative in previous works.

(residual modes) are rarely encountered in
practice and can not be easily excited.
Furthermore, the bandwidths of control devices
(actuators and sensors) cannot respond to
these modes. However, when the actuators

excite the actuators excite the residual modes,

the control and observation spillover have-

been shown to lead instabilites in the closed-
loop system and thus to seriously degrade the
system performance‘”, In a series of papers
Balas® 15,18 proposed some excellent remedies
for the spillovers to remove the instability
Also, Skelton and Likins“?™

proposed an orthogonal filtering as compensa-

mechanism.

tion for the residual effects. These works
provide a significant contribution to the
solution of control and observation spillovers
problem.

Implementation of the feedback controller is
also important from a design consideration.
The implementation often necessitates mea-
surement of all state variables such as
amplitude and velocity of the individual
vibration mode. In actual practice, measure-
ment of all these variables is costly or even
impossible when a large number of vibration
mode are to be controlled. One solution is to
use a linear dynamic observer which estimates
the state variables which are inaccessible to
physical measurement. In this case the
observer feedback gains greatly influence the
overall control system performance. Previously
the observer theory has been used for this
estimation®?, but a large error occurred
during the early transient period of estimation
due to preselection of the observer feedback

gains.

Another important consideration is to achieve
better control effectiveness with fewer actua-
tors and sensors needed to implement a.
governing control law. A rational approach to
achieve this end is to optimize design para-
meters such as the number and location of
actuators and sensors. In previous studies the-
locations of actuators and sensors have been.
prespecified arbitrary and consequently the-
design problem to determine their optimal
locations has not been fully investigated

In the design method proposed in this paper-
such criticisms are avoided. The method
determines optimal locations of actuators and
sensors and uses an optimal observer for
feedback implementation to make the estima-
tion error to be minimized at an early period.
of the observation. The vibratory system to-
be studied here is a centrally clamped circular
plate which has important applications in tur-
bine disc, -circular saw, and computer memory
disc. The plate dynamics are formulated by a
finite dimensional state variable model,
incorporating the control force due to the
actuators. This finite dimensional modelling
seems to be feasible in the case of a centrally-
clamped circular plate, since higher frequency
modes (usually nodal circle modes) are not
usually observed from a spectral analysis. For-
some practical reasons, if any significant
higher modes can not be included for the-
controller design, the spillover compensation
methods proposed by Balas and others may
be used to suppress the unwanted residual
modes effects. Therefore, in this paper the-
residual mode effects will be assumed neglig-
ible from a stability view point.

The optimal controller gains and actuator
locations are obtained based upon minimization.
of a prespecified performance index which

represents the vibrating plate energy. This
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method is similar to that of the reference!®
described for a general class of distibuted
parameter control systems. The optimal
-observer gains and sensor locations are derived
from the minimization of a performance
index taken as a measure of deviation of the
-estimation states from true responses. Response
-characteristics of the controlled plate system
such as modal damping ratios and natural
frequencies are obtained and compared for
various design parameters. These parameters
include the number and locations of actuators
and sensors, and the weighting factors used
in the performance index. The effects of these
parameters on the controlled response char-
acteristics are discussed in some detail. Also,
it is shown that an optimally designed observer
drastically decreases the control period required
for effective vibration suppression, as com-

pared with the non-optimally-designed one.

2. Analytical Control System Model

A pictorial scheme for the active control
system of a stationary circular plate is shown
in Fig.1. The plate is clamped at inner radius,
y=>.
Actuators which provide control forces are
N, on
the plate. The N point forces control the plate
‘motion, obeying the actuator command signal,

y=a, and is free at outer radius,

located at points (;%,6:2), i=1,2,--,

Active  controller

N actuators

M displacement
$ensors
Y1) o o oo o Yitt)e

Fig. 1 Active control of a circular plate vibration.

Desired vibration
fevel @

Prefiter e

f:(®) generated by a feedback controller. M
point sensors measure the instantaneous
displacement of the plate and are located at
points (7, 6%, j=1,2,... M. The equation
of motion governing small amplitude, tran-
sverse motion of a thin plate subjected to N
point actuating forces is described in a dimens-
ionless form:

En? 0*n

oA ria+ 57 ~A25(¢9 6:2)
o(7—7 :

—C———) 20 @
Where # 1s the plate displacement, % is the

half thickness, p is the density of the plate,
E is the elastic modulus, v is poission ratio,
d(+) denotes the dirac delta function, and the
right hand side of the equation denotes is force
per unit area applied to circular plate by the
actuators. In the above nondimensional quan-
tities are defined as

WDmn

:y/b, Onn= )

pi=b'p?, ﬂ=%, ?=-br—, ¥

z':wogt, A:A/b27 71: ﬁph(bz.}jiaz)wooz

where the super bar denotes dimensionless
qliantities, the subscripts, m and #, refer to
integer number of the nodal dimeters and
nodal circle modes, respectively, w.. are
natural frequency, and A is the plate surface
area, f; is the time dpendent force magnitude,
and a and & are the clamped inner and outer
radius, respectively. The bounday conditions
at the clamped inner radius, 7=g are

#2=0
27 =0 @

and the free edge boundary conditions on the
outer radius, 7=»> are
opm , 1—v 0 (6m  @m\_
7 T o6 (ar_ )”0

7
0%% 1 aa (74
a7 T ”(7 R ) &)




86 S. W. Hong and H. S. Cho

The dimensionless displacements of the
circular plate to .be measured by M point
sensors are given by

3,0 =u(Fs, 07,0, j=1,2, ..M. @

The solution of the equation (1) may be
expressed as an eigenfunction expension of
the free circular plate,

u(7, 0, f)=io by Grnn(@)Run(F)cosm 0 (5)
m=0n=0
The radial mode shape function is
Ran(P)=Cy JaQun 7) +Co Yo(Ann 7)
+C3 Im(szl ’_’) +C4 Km(ﬂ\n;n 7)
where the eigenvalue .. are related to the

natural frequencies of the plate

2 e 3P =V we
' = ER

The functions Ja, Y., I. and K, are Bessel
functions of order m, and the coefficients, C;

and the values of A.. can be determined from
the boundary conditions (4) and (5). They

are tablated for clamping ratio, %ZO. 5, (49

Control System Model
As can be seen from equation(5), circular

plate is an infinite dimensional system,
consisting nodal diameters and nodal circl‘e
modes. If the high frequency modes effects
on control system performance is assumed
negligible, a truncation modal expansion may
be used to restrict the control system to a
few significant lower modes which can be
selected for the system performance require-
ment such as dynamic stability and vibration
tolerance. Let p be the number of vibration
modes to be actively controlled, consisting 0
to 7 nodal diameter modes arnd 0 to s nodal
circle modes. Then the dimensionless displace-

ment, Z may be written as

z(7, 0, ©) =§o éoqm(r)Rmﬂ(?)cos mb  (6)

where p=7Xs.

Substituting equation (6) into equation (1),
multiplying the resulting equation by 7R, (%)
coslf, integrating both sides over the domain.
(6e{0, 27}7¢{0.5, 1}) and using the orthog-
nality relationship of the eigenfunctions lead
to the following time-dependent modal equa-
tion.

N
émn(r> +wmn2 an-(f) :Agl Rmn(ria, 01'“)

cos mb2fi(r) 1 m=0, 1, 2,...7, ¢p)
n=0, 1, 2,...8
Let the amplitudes g.. (r) and velocities.
Gnn(z) form the state of the controlled system..
The state variables is defined as,

where x(z) is 2px1 vector, g(z) = {qoos Go1,
g-}7 is px 1 vector, §(z)={qoos do1s++-drs}T is
px1 vector, and T denotes the transpose.
Then the equation (7) can be put into the
following state equation :
#(2) =Ax(2) +Bu(z) €
where control input vector #(z) is
%Cf)z {F1@), F2(2), ... fx(D}T
and the system matrix A and input matrix,

B are

The A is a pxp diagonal matrix whose
diagonal entries are the squares of the con-
trolled mode frequencies,

A=diag{@e®, @1’ @'} )
and the B* is PX N matrix whose rows are
the controlled mode shape functions @¢a..(7, 6}
evaluated at the actuator locations,

Br— A[gboo(?l“, 01%)eeens Boo(Tu?, 0»:“)](10)

Grs(71%, 01%)ceneee rs(Fa®, Ox%)
where @un(7, 0) =R (¥)cos mb.

The sensor outputs in equation (4) may be
written in vector form,
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F@)=1{53(0), 32(r),.c0neFu(D)}T
and satisfies

¥(@)=Cx(z). an

Since the sensors measure only the displace-
ment at each location and contain only the P
controlled mode signals, the output matrix C
can be represented as ;

C=[C*:0]. (12)
~In the above the C* matrix is a MXP
matrix,

C*:{qﬁoo(?,’, 0:1%) eenen &rs (74, 01‘)} 13)

boo(Fi®y Ou®)...... &rs(Puy On®)

It is noted that the C* matrix is dependent
entirely upon the sensor locations and also
that B* in equation (10) is a function of the
actuator locations. Thus the locations of
actuators and sensors will be optimized to
give the best vibration suppression perfor-
mance.

3. Synthesis of Optimal Feedback Control
System

Minimization of system energy provides a
natural goal for this vibration problem. The
dimensionless total system energy, Er for the
p controlled modes is given by

Er—Ert Ex=3 5 {@nnf@un(t) +dnat (D)}

m=0n=0
where E» and Ex are dimensionless potential
energy and Kkinetic energy, respectively. The
above equation may rewritten in terms of
state variables x

Er=47(2)D¥(s)

A
where D= [

:l ; 2p X 2p matrix,

Also, it is necessary to constrain the control
force, #(z) in minimizing the vibration energy.
Then a quadratic periormance index to be
minimized is chosen as

J=3{ @@z +urRuyd. (14
weighting matrices @ and R are
nonnegative and positive definite, respectively
and selected to have following forms:
Q=WTDW
R=diag{B, 8,...... G}
where W=diag {1, a, a?...a", 1, a, a@%..a""'}
permits the modes to be weighted relative to

where

each other.

Provided that the control system in equation
(8) is completely controllable for the given
actuator set, i.e.,

Rank{B,AB, A*-'B}=2p.
then the optimal control law minimizing the
performance index can be put in the form,?®
u(r)=Fx(z), F=R-'B"K 15)
where the matrix K is a symmetric positive
definite solution of Riccati equation
KA+ ATK—KBR-'BTK+Q=0. 16)

Since the actuator positions determine the
B matrix, the optimal gain matrix, X depends
upon the locations of actuators.

The control forces to be generated by
actuators, as given in equation (15) are
analoguous to those generated from a passive
damper: The force component proportional to

velocity, 4(z) play the same role as viscous

damping, while the component proportional to
displacement, ¢(z) play the same role as a
spring force.
Optimal Actuater Location
The optimal performance index J° is given
by Levine and Athans®?

Jo=2 27 (KO an

where x¥(0) is initial values of the state
variables and K satisfies Riccati equation{lﬁ).
Since the actuator locations (7,2, 6:%), i=1,2,
N, affect the matrix K through the input
matrix B, the J° also depends upon the
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actuator locations. The J° is proportional to
trace (K), as pointed out by Levine and
Athans, ¢V
reformulated to be

and thus the problem may be

minimize trace(K) as)
7o, 82, i=1, 2,...... N)

The minimization of 7T,(K) over the
actuator location may be carried out by using
Rosenbrock algorithm,®® once the initial
positions of the actuator and sensor are
established. At each stage of Rosenbrock
algorith, Riccati equation“® must be solved
by iterative technique proposed by Kleiman. %
Initial positions of actuators and initial posi-
tions of actuators and initial feedback gain
matrix L, are so chosen that the matrix A+
BL, all have arbitrary specified negative real
parts.

4. Active Controller Implementation

Implementation of the optimal control law
as given by equation (15) necessitates
measurement of all feedback variables such
as modal amplitudes, ¢(z), and velocities ¢(z)
of the P vibration modes. To measure all
these variables, 2p number of displacement
sensors and velocity sensors must be available.
However, it is costly or even impossible to
use such a large number of sensors. Since
only M(<2p) displacement sensors are assumed
to be used, the feedback variables are not all
available directly from the physical measure-
ments. One solution to overcome this difficulty
is to use a dynamic observer which produces
estimate value, £(z) of the true state ¥(z),
provided that the control system in Eqs.(8) &
(11) is completely observable for the given
set of sensors. If a full state observer is used
for illustration of the feedback system design,

then, the state equations describing the ob-

server dynamics have the form:
#=A%+Bu+G(y—3), £(0)=0 a9
§=Ct
‘where initial state of observer £(¢) is taken
as zero conveniently and the observer gain, G
is a 2pX M matrix. Defining error variable =
¥—2X, the error equation is obtained by
e(@)=(A-GCOe(z), e(®)=x(0) 20)
Thus, the observer gains G may be chosen
to make the estimation error decay at a
prescribed rate, so that £(z) may be driven as
close to ¥(z) as possible. Note that the sensor
locations also affect the error dynamics through
C matrix. The optimal feedback control, #(z)
in equation (15) may be rewritten, if the
estimated state is substituted for the true state.
u(r)=Fi(c), F=—R'BTK ))
This completes the implementation of active
controller, but it remains to determine the
gain G and the sensor locations. The complete
optimal feedback control system with the state
estimator is shown in Fig.2.

+ J o
Desred 0 —pﬁ?—-{ EY%s
vibration -

state

|

Actuoixs

. 2
Coniruled C

pte

Fig. 2 Optimal feedback controller with a state
estimator

Optimal Observer Design and Sensor Location

One method of observer design which makes
the estimate value close to the actual value
of true state is to minimize a performance
measure of the deviation of the estimate value
from the actual state. The performance
measure may be chosen as an increment of

the performance index given by equation (14)
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due to using an estimate value of #(z), instead
of the actual state x(z) for the feedback
control #(z). The increment, J is given by

4]=1{"r FT R Fe az (22)
From Eqgs. 20 & 22 the 4] can be rewritten by
4]=2x"(O)Lx(0) (23)

where the symmetric positive definite matrix
Lyapunov equation,

(A-GO)YTL+L(A-GC)=—FTREF (24)

As clearly shown in the Lyapunov equation,
the matrix L depends on the sensor locations
(75, 0;4) through the output matrix C, and
observer gain G. Therefore, minimization of
A] subjected to equation (24) leads to an
optimal design of the dynamic observer as
well as sensor locations. Since thel, ¥7(0)
Lx(0) in equation (23) is proportional to trace
(L), the optimal design problem determining
sensor locations (7,5, 6;°) and observer gain G
may be reformulated as follows:

minimize T,[L]

F 055 7=1,2, couue. M) (25)
where the symmetric positive definite matrix
L satisfies the Lyapunov equation.

(A-GC)'L+L(A—-GC)=—FTRF  (26)
and the characteristicequation of observer
matrix must satisfy

[sI—(A—GO)| =(s—5)(5—S55)...

ST ©1))
where s, S,,...5,, are the desired locations
of the eigenvalues in the complex plane. If
each column of G is designated as a column
vector, {g.} and assumed to be identical for
simplicity, then

{g:}=1{gi
where {g.} is 2pXx1 vector.

The minimization of T,(L] is carried out
by using Rosenbrock algorithm, while satis-
fying the equations (26) and (27) at each
stage.

5. Numerical Results.

For the present simulation the circular plate
is assumed to predominantly vibrate in the
lowest four modes, namely from zero to three
nodal diameter modes with zero nodal circle.
Then, the displacement of the controlled modes
in equation (6) are represented by

8(7, 6, )= 3 quu(®) Ru(Pcosm0  (28)

The performance index to be minimized,
then,
associated with the first four modes. The

contains the modified energy term
dimensionless natural frequencies of those
modes are given by Mote:!®

number of nodal

diameters, m : 0 1 2 3

dimensioness natural
frequency, @mo(wme/ 1 1.0204 1.1290 1.4252

woo)

5.1. Optimal Actuator Position

The number of force actuators was considered
from one to three while up to two sensors
considered. Since maximum amplitude of the
plate vibration accurs at the plate periphery
(=1, 0), this radial position will be the most
effective to control the plate motion. Hence,
all actuators and sensors were assumed to be
located at 7=1.0.
chosen for th oatimization procedure were «
=1.0 for the modal weighting and 10-* 8=
1.0 for the control

Numerical calculations to obtain the optimal
feedback gain F and actuator position, 8
were carried out for N=1, N=2, N=3,
using equation (14), (15), (16) and (18). For
a single actuator case, the actuator was located
at a fixed position 8,°=0°, 7,°=1.0, and this
position was also used for the first actuator

The weighting factors

weighting.

location for the cases of multiple actuators.
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Table 1 Opimal actuator position and controller gatn matrix (a=1.0, 10"* §=1.0).

Numbir of| Optimal
actuz;\t]or gg;‘fg;;r Controller gain matrix F (x10-2)
1 0° —0. 9570 0.5257 0.5654 —0.4518 1. 0470 1.3221 —1.3222 —1.378
2 0° —0.0880 —0.2260 —0.4150 £—0.2341 0.8371 1.1292 —1.1881 —0.9880
119.0° 0. 0431 0. 1993 0.1661 -—0.1120 1.1361 —0.0802 0.6581 —0.9960
0° -0.0131 —0.0916 —0.1724 -0.1535 0.6576 0.9577 —1.1101 —0.7860
3 125.6° 0.0351 0. 1068 0.1892 —0.0320 0.9858 —0.9212 0.3408 —0.8187
63.0° —0.0106 0.1643 —0.0708 0.0431 0.7708 0.4350 0.7737 0.8360

Table 2 Modal damping and natural frequency (a=1.0, 10748=1.0).

Number of 1st mode [ 2nd mode 3rd mode ‘ 4th mode
actuator
N 8o | @ | B g | aw | fe |
0 00 | 10 | 0o Loo4 | 0.0 | Li200 | 00 | Lz
1 0.0121 | 1.0083 | 0.0320 | 1.0159 | 0.0230 | 1.1304 | 0.0051 | 1.4314
2| 0033 | 10026 | 0.0280 | 1.0214 | o.0261 | 1.138 | 0.0073 | L4247
3 | o047 | Looaz | o031 | Lo2o0 | 0.0283 | L1 | o.0006 | 1.4138

The optimal results for the feedback gains
and locations are shown in Table 1. It is noted
that the optimal position of the second actuator
is little changed.

In Table 2, modal dampings &., and natural
frequencies @., of the controlled plate are
listed. Since the uncontrolled case is a free
undamped vibration of the plate, the modal
damping ratios are zero. It is clearly shown
that the ., increases with the number of
actuators for all modes except the second
mode. The second mode shows a biased dam-
ping with a single actuator and slightly
decreases with multiple actuators. A remarkable
increase in the modal damping for the
fundamental mode is achieved with three
actuators, the increase of which is approxi-
mately 400% times that obtained for a single
actuator. It can be concluded from this table
that the use of more actuators results in better
control effectiveness, and that controlled modes

frequencies, @., are little changed from those
of the original uncontrolled system.

5.2. Optimal Observer Gain and Sensor
Position

The optimal observer gain and sensor posi-
tion were calculated, using equations (25),
(26) and (27). In this computation the
actuators were assumed to be positioned at
their optimal locations and the corresponding
optimal gains F' were used, as given in Table
1. The eigenvalues of the observer matrix
(A—GC) were prespecified such that the
largest transient time of the estimation error
would be less than about 20% of the smallest
transient time of exact state variable x(z).
Thus, comparing eigenvalues of A+ BF, the
desired eigenvalues of observer matrix A-GC,
were arbitrary specified in the left complex
plane.

—0.51667171. 6186, —0.3942+ /1. 3443
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—0.275371. 2543, —0. 22264 70. 9822
The 8§x4 gain matrix G and sensor location
matrix C were computed for the following six
cases:
case 1; a single actuator-a single sensor
(N=1, M=1
case 2; a single actuator-two sensors
(N=1, M=2)
two actuators-a single sensor
(N=2, M=1)
two actuators-two sensors
(N=2, M=2)

case 3;

case 4;

91

case 5; three actuators-a single sensor
(N=3, M=1)

case 6; three actuators-two sensors
(N=3, M=2)

The optimization results are shown in Table
3. The use of a single sensor yields an optimal
location #,*=16.11° when a single actuator is.
used. This optimal value shows a slightly
increasing trend with the addition of actuators.
When two sensors are used, the optimal loca-
tions vary only slightly regardless of the
number of actuators used.

Tabl 3 Optimal sensor locations.

\Number of actuators One l Two ’ Three
R —
Number of sensors 1 2 \ 1 ‘ 2 ' 1 2
22.92° 24.58° 24.23°
Sensor locations 16.11° 39.4° 38.0°
0 49.21° | 53. 66° 51.74°

5.3. System Responce

Since the optimal actuator and sensor loca-
tions, and controller design parameters such
as controller feedback gain and observer gain
were obtained, it is interesting to investigate
this
Although the above design parameters all

the performance of control system.
affects the system performance, the discussion
is concentrated only on the effect of sensor
position and observer design. For this purpose
the response character of the controlled plate
is simulated for the following two cases:

1) Two optimally-positioneds ensors with an
optimal observer (optimal system)

2) Two sensors located at nonoptimal posi-
tions with a non-optimal observer(nonop-
timal system)

For both cases three actuators were used
and assumed to be optimally located as given
in Table 1, and the following initial conditions
were used:

x(0)=1{0.01, 0. 005, 0. 003, 0.002, 0, 0, 0,0} "

Sensor locations for the nonoptimal observer
gain was chosen to be very near to those of
the optimal one:

{g:}=1{7.620, —18.136, —17.214,
—1237.6, 24.421, —34.726,
—12.960, —1081.9}

The dynamic responses of the controlled
plate are illustrated for the nonoptimal and
optimal systems in Fig. 3a and Fig.2b, res-
pectively. In Fig. 3b amplitude ratio of the
optimal case to the nonoptimal case is shown.
These responses were computed at a location
7=1.0, 0=0° In Fig.4 the estimation errors,
namely, (y—3)/h are shown. The left side
figure is presented for the optimal system
while the right side figure for the nonoptimal
system. Note that vertical scales of the
estimation error for the two cases are different.

Since . both optimal and nonoptimal cases
have the same specified eigenvalue of observer
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150 | 5
l non-opri:'nol case $° t
075 2 4p
= ) * 1
> 55 |
- iR ]
5 000 T, o R
E Ty g |
g, - \
< g 2“.‘
~0.75] || §,
<t 1~
~1505 26 80 20 %0 0 0 ) 20 %0

Dimensionless time , T

(a)
Fig. 3 Responses of the controlled plate.

Dimensionless time , T

(b)

(a) Response of the nonoptimal system.
(b) Response of the optimal system: yop:; amplitude of optimal response
Ynon; amplitude of nonoptimal response

0.23 96 [
L3
optimal | case non—optimal case

< oMs5 S 4.8 ﬁ
ko] /\ =
5 N A / \
‘8 0 v J/\ 5 fo) / \\/ / \
5 V 5 \/
: g
& -ous Y U —

~0.23 . -96

o] 8 16 24 22 0 8 1 24 32

Dimensionless time , T

Dimensioniess time , T

Fig. 4 Estimation error v.s. time.

matrix, A—GC, the decay rates of the estima-
tion errors for . both cases are
However,

1dentical.
in an early stage of estimation,
error for the nonoptimal case is much larger
than that obtained for the optimal case, as
can be sean from Fig.4. Due to this large
-estimation error, the response of nonoptimal
case shows a slight instability in the early
stage as shown in Fig. 3a. Comparison of the
two response figures (Figs. 3a and 3b) shows
that the optimal observer and optimally posi-
‘tioned sensors drastically decrease the control
period required for effective vibration su-
ppression. Qualitative implication of this result
is that observer design as well as sensor
location are very important in designing an
active vibration control system.

5.4. Effect of Weighting Factor

The modal weighting parameter « and
control weighting parameter 8 used in ths
performance index affect the optimal actuator
and sensor locations and modal dampings
through equations (16), (18) and (24). The
choice of these values generally depends upon
the relative significance of each vibration mode
for the system performance requirement and
the
actuator. Within the parameter range specified

also the force-generating capacity of

an optimal choice of these value depends

entirely upon the designer. However, it is
usually very difficult to specify in terms of
a and B such response characteristics as decay
these

rate and decaying time. Therefore

parameters were arbitrary varied to investigate
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their effects. In this investigation, two actuators
were used and their optimal values and the
eigenvalues of the matrix A+BF were com-
puted.
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Fig. 5 Effect of weighting factor on modal
damping.

In Fig.5 the effect of @ and 8 on the nega-
tive real value of the eigenvalues which is
indicative of modal damping is illustrated. The
dotted lines are displayed for a=1.0 and the
solid lines for «=0. 3. The modal damping of
each mode all except the first tends to increase
with increasing « value. This is expected
because increasing the a value means heavier
weighting on those modes, as can be seen
from the weighting matrix @, thus resulting
in much larger values of the modal damping.
Decreasing f8 value increases the modal damping
of all modes. Within the range £=0.1~1.0
the increase This is
realizable, since smaller value of B indicates

is quite remarkable.

relatively heavier weighting on the vibration
than on the control energy to be exerted by
the actuator. Therefore, by appropriate choice
of modal weighting « and control weighting
B, desired magnitude and distributiou of modal
damping over the controlled modes can be
obtained. If any particular mode is excited by
external disturbance, extra weighting may be
necessary for that mode.
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Fig. 6 Variation of optimal actuator location witl

weighting factor,

Fig.6 shows how the optimal position of the
second actuator varies with the a and @
parameters, when the first actuator is assumed
to be positioned at a reference location 6,*=(°.
The optimal location changes little with varia-
tion of the control weighting 5. The maximum
angular position difference is only less than
2% when keeping the a value constant. The
location, however, appears to have a slightly
greater dependency on the modal weighting
parameter a. This indicates that the optimal
actuator position is more sensitive to modal
distribution of the vibration over the plate
than to the actuator force magnitude. With «
increasing, the location becomes closer to the
reference angle #,°=(° where the first actuator
is positioned. The maximum angular position.
difference is approximately 6°,

6. Conclusions

A design procedure based upon optimal
regulator problem has been applied to an
active control of a vibrating circular plate.
The method determines optimal actuator
and sensor loctions and utilizes an optimal
observer for the feedback implementation.

The optimization was made for a truncated
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‘mode approximation, based upon the assu-
mption that the compensation techniques as
proposed by Balas, Skehton and Linkins, and
Canavin can eliminate the neglected modes
effect,
occur. Simulation of a controlled plate response

if control and observation spillovers

was done for a four-vibration mode approxima-
‘tion to evaluate performance of the optimally-
-designed control system. The major results of
this simulation show:

1. The modal damping increases as the
number of actuator increases. Therefore, the
use of more actuators positioned at their optimal
locations reduces the vibration level more
effectively.

2. Anoptimally-designed observer drastically
.decreases the control period required for
effective vibration suppression. A nonoptimal
observer, however, may result in dynamic
instability in an early transient stage due to
large estimation error, thus requiring much
longer control period.

3. The choice of weighting parameters used
in the performance index greatly affects the
modal damping. For an appropriate choice of
the modal weighting parameter «, the modal
damping of all modes increasses with decreasing
the control weighting parameter 8 and increases
very rapidly especially within the parameter
range 8=0.1~1.0. This is expected because
decreasing the control weighting parameter
indicates relatively heavier weighting on the
vibration in minimizing the performance index.
“The optimal actuator locations are found to
slightly vary with the modal weighting
parameter but to be insensitive to the control
weighting parameter. This result indicates
‘that the modal distributions over the plate is
-somewhat more important in determining the
.optimal locations than the actuator force
-magnitude.

In the design method proposed here the
optimization was done for a four-vibration
mode approximation. This may be unrealistic
in some cases when the residual mode effects
can not be neglected for the active controller
design. Therefore, further study may be needed
to investigate the residual mode effects on the
optimization problem.
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