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Abstract

Under a continuous-review inventory system {Q, 1>, the inventory position process was
proved to be asymptoticaily independent of the genera! renewal demand processes, when
the two processes form an asymptotic unimodel joint distributien.

The analytical technique implemented through this work seems to be more like general,
and so the periodic-review system (R, r, T can be similarly investigated.

In conclusion, the results may be evaluated 1o direct to the analytical analyses of some
inventory systems which have been treated under some restrictions on demand processes.

1. Introduction

Inventory systems are operated largely ba-
sed on some operating policies concerning
review systems and ordering rules. The so
—called transactions - reporting ( continuous
-review) systems and periodic- review sys-
tems are commonly used for inventory syst-
em review.

In both inventory systems the inventory
position {1P\:t > 0) totally depends upon the
demand process {N.:t >0). Furthermore,
the so-called net inventory process {NIS; :
t >0} can be defined as NIS: = IPi.. —D (t-u,
t) for a lead time u> 0, where D (4 1=
Ni-Ni-.. Therefore, once it is verified that
{IP:-=} and [D(‘__"j} are mutually indepe-
ndent of each other, the analysis of {NIS:}
will become straightforward, from which
the cost process can be immediately derived

whose average one may seek,

In such research direction, the inventory
position process associated with stationary
Poisson demand process has been specified
in Hadley and Whitin f1)., Sahin [ 3 j has
extended the study for continuous -review
{s, 5 inventory systems with general ren-
ewal inter—arrival and demand processes and
a constant lead time, However, continuous
-review {Q, r ) inventory systems are not
tréated in literature.

It will be proved that for a {Q, r} inven
tory system with general renewal interarriv-
al and demand processes {N::t)> 0} anda
constant lead time u }>Q,{IP..) and {D(u,‘]]
are asymptotically independent of each other,

2 . System Analysis

When demands arrive at time points t,, t.



------ , (0{ty<{ts), the sucessive inter-arrival
times {Xi:i)1} are defined as X,=t;, X, =

tz—ty, oot , Xa =ta —t,;," - Let N: be cumula-
tive demand by time t > 0. Then {N.:t )0}
is a discrete-valued continuous - parameter

ocounting process with sample paths non-de-
creasmg in unit steps.

An inventory position IP: at time t tota-
lly depends upon the demand process {D.:
tel'}, where the parameter set T is the ind-
ex set of the process, If the inventory sys-
tem (Q, r) is started with IP,=r+i(i=1,2,
, Q) at time t =0, then IPi.u=r+j{j=
1 2, . Q) at time t—u)0 can be reached
after the (i-j)™ or {i+(m-1)Q+(Q-j) ;
m=12, - } demand materialization by time
t—u, where m denotes the total number of
order replacements by time t-u and (i-j)*
=mag {0, i-j). Therefore, it may be seen
that if the cumulative demand process {N::
t >0} forms a strictly unimodal distribution,
the {IP::t >0} will converge in law to a un-
iform distribution.

Consider a cumulative probability distrib-
ution function G (x) of which the probabili-
ty density is defined with respect either to
Lebesgue measure or counting measure. M
is a mode for such a distribution functionif
G (x) is a strictly convex function for x
M but a strictly concave function for x ) M.
Moreover, such function G is strictly unim-
odal, and its probability density g is also a
unimodal function having g (y) )g(:}) for
x{y {M and reversed for x>y> M.

Let [x ) be the largest integar less than or
equal to x : that is, for x=0, 0= x-[x)
(1.

Lemma 1.

Let the members {G:} of an index set of
distributions have densities with respect to
oounting measure that are strictly unimodal
for large enough t, with mode M.. Also -
suppose that there exists a set {a(t), §#&
(t}} of norming pairs {where A{t) is an

increasing positive - vatued function), such
that for all real Z,

G ((a()+Z+ B(1)))=Gu(Z). (1)
where G. is a strictly unimedal distribution
having a strictly unimodal density with re-
spect to Lebesgue measure, with mode at
Z=0.

Then, for Z % 0,

(a(t}+Z-8(t)) g M. for large enough
t.
Proof .

Without loss of generality, consider the
case [a(t)+Z - 8(t)) »M: for Z 0.

If the conclusion were false, then there
would exist a sequence {t;} such that as
ti—o0, [a(ti)+Z-Rt1))=M:, ¥ and
hence .

(a(t)+Z/2« Bt (a(td)+Z - 8(ty)

< M.y, ¥,
so that
[cr(ts +Z - B(t)]- [cx(t:) +Z/2

ti)J

+G:([d(ti)+z B(ti)])
E“(ti)'i‘zfz'ﬂ(ti)]'—[a(ti)l}
(e(t}+Z-8(ti} )~ {a{t})

Z2G([a(ty+Z/2 -8t (2)

By definition,

{a{ti)+Z-8(t))-(alt)+Z/2

« B{ti}]

Ca{ti)+Z « B{t:))-(a{t)]

a(ts)+ZB{t)-1-a(t)-Z/2
B(t:i)

—alt))+Z.8(t)—a(ti)+1
= (1/2Z-1/8(t:))/ (Z4+1/ B¢,
and

a(ti)-f-z'ﬂ(tl}-a(ti}"Z/an(ti}

Ri(t:) =

RI(h)gﬂf(t J+Z - B(t) -1 ~a(ty)
= (/2-Z+1/8(t0))/ (Z-1/ 8(t1)).
Therefore, lim R,(t:}=1/2, (3
tr—oo

[a{ti)+2/2+8(t:)])- [e(ti)]
{a{ti)+Z+B(t))-[alti})
a(t)+Z/2 » B{t:) -1 —alt;)
a(ti)+Z+ 8 (t)-a(t:) +1

R (ti)=
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S (=3 (b2 Z{"i){ﬁ{t‘l )f (—Z,_l_l;r B{tl)
and
Ryt £ L) +Z/2. ﬁ(t, a(; ).,.1
A (t0 T2 B (b Lod(t
- T2 2/ L)/ (22 1/3(:»
Also, fluIl Ra(ts) =- l— N (]

Now, taking limit on both. s:des of Eq 2),
from Eqs. (1), (3} and (4), ° o

{3 724GH 06 . (2)) 2 G {2/2), and so

Go(0)+Ga (222~ G (2/2} ’
Therefore, Go (Z)-G. (Z/2) = G +(Z/2)~6510)
However from the strrct}y oonca'\rlty over
Z>0, RIS fots R

Go(Z)'Go(ZfQ) 4Gy {2/2) Goﬂ})

Hence, stz contradiction’™ &

Similatly, 4 contradiction can also so be
shown for the case [a(t}—}—Z S(t}] {M{
for Z <0. '

Thus, the proof is complete: ™ = - -

Let F (x) (0= x ¢oo) be the distribition
funttlon 3f the demand mterarnval DIocess

{Xpin=1,-2;- w—} and assume that: a="E
Xy} (DO and” #” = Var ( X ) oo

Prabhu [2] shows that 1f ‘t >0, the corr-
espondmg countmg process {Nt has an as
yrnptotmally normal dlstnbutlon with mean
t?p and variancé taz?p that 1s

tﬁ&Pr{V-ﬁ,—T&u }* h/T f‘ ’Wdey

e e . ey

It follows m v1ew ef Lemmal that this
ncrmahty means the ummodaltty of the as-
ymptotmxhstnbutmn of ,L;Nu }.

(hm 1‘3 e B S

When t is large enough thegevcntual str-
ict; vnimodality of-the, pré-asymptotic dist-
ribution of N is a sufficient cén‘dit,mn t])a_at
for Z >0, the-defmand - faaterializabions Ns =

(8 a R EZWIAF A ) by timetatelon the rig-
i side of the madel M e

Sﬁb:'ﬁdgé not'—~'~"TEén,' “there "ééiéts a gubige
quence (Z; } such that (t/p+Zi VT8 7 #°)
< My, 50 that #em Eq {53“ e

J-Zl?’2 A —-x /‘2 dx SL
Az & 2 /2 7‘7—"

ot g X /de;-{{) . .
which impligsTim o< < i Hmife\rEr “‘orthe
right §ide of the ‘mode, 1im’ a, 50 391 J Th—
erSfore N i#iE S cunbisdictitn: -

The above unimodalify siiall bl appl'iéd"t'o
prove that: thérinVventery position” 1P ) in
a-¢Q, ed: systeny iogaverdés tol a uniférm di-
stribufion (Sea: also TSNazﬁaﬁM]} .
Theoremf’ " =1 = #7d

- Asstume that the ‘démand iritét - arfival ti-
mes: X; are’ iici"fra*ffﬂo‘?m%;ari'aﬁfes'with a com-
on’ probabrhty dlstrrbutldh F (w1th F{0)==0),
I for Iarge enough t the’ dlstnbutnon of the
corresponding retewal codfiting process N:
is strlctly unlmodal then, "in the transacti-
ons Teporting sYste‘m w1tﬁ QY Dperatmg
dbctrme the mventory posmon at’ time t
IP‘ converges 1ni Wlto a Umform dlstnbutl

Let {ni:i=12, - } be :i_"'éédﬁéﬂé‘e' ‘of no-
n.negative ntegers and fée M d(mote the
ode of ‘the digttbution of Ne| =

Motlvated by the réfatmn“r' T

Pr; EIP; -—r'+ &}1'"}_’}" Br 1Nr IPQ Aw Q*-J)}

for 3‘, _,1 2

f&ileqlngdnﬁryt; nﬁ.qrg Jg‘nﬁen.,..lk. S
Denotlilg Pr{Ne=i-Q+(Q- 3)] bY f
SR (Q- D), o

s [mn‘tﬁj%j B
.E 1E] "‘Q T T~

TR S | U & B R L
Ri(n,ni= 5 Puli)= Z
iq"‘lQ {—1 1__n1

P: (IQ+ (Q-¢) }

to 1se xubwm 1% o [%fé'{hf,;qg’zr:gem
inEgesT riid Edbisneh oven @107ini
l_;u “519‘ J}J?erihﬁ.smﬁlie%xintegml ol ti-
ple of the ordering amount Q-greater than
or. equal te X i,

if (n~ 1)Q<x,§nd;thgccxn~ua

- 3L -



Let N be a set of nonnegative integers and
let a finite subset E be a sequence of nonne-
gative integers {ni:i=1 2, g}, for g
= 1, associated with the demand occurrenc-
es of N: by time t.

Denote by F {L ] the probability distribu-
tion of N. with respect to counting measure
on the set LCN, Then, ast™~° without
loss of generality the finite subset E¢ can
bs formed such that for arbitrarye ) 0.

(1) F{L}<e, if L =[0,n:Q] or L= (ng(f)

@i} F is a strict convex function over E,(C

Ep. where 1< v < g and n, Q (M,
(& F is a strict concave function over E,0
Eﬂ with nﬂ.l.]_ Q >Ml )

where E,, is the complement of E,, and

thus n, 1 € B,{1E,.
Therefore, for £ m=1,2,------,Q (but {+#
m},
P (0,00)-P7 (0,00)|< (IBF(0,n1,Q)+
P (0,mQ]l

v-l

+ Zl IP4n,Q,ne11Q)-P" (ngQ,
or=

na+1QJ!

+ 1Pf (0, Q 1y 4 1Q)+F" (n,Q, 1y 4
Q1l

+ Zl‘ {P’(ngQ,n Q-F (n ‘Q
¥ i g ¥
2 P 8 8+1 B

0941 Q!
+ [P/ (n,Q00) +B" (n,Qo0) I}
< (Re (0,n;Q)

v -1
+a§1 IRs[ny 41 Qny41Q+(0g 41 -)
-R. [naQ—(na_H '_na) s Dy Qj i
+R: [ny, Q, 0, 1Q)
p-1
+ 2 I|Riin Q, n Q+mn
B=vr1 8+1 8+ A+1

-ng)J ~R: (ngQ-ngy g -ng), ngQi
+ R [an,oo]}, 6
Let M, be the mode of a standardized nor-
mal distribution ®(Z), where M.=0 at Z=
0. Then consider a new finite sequence {Z;

:1=1,2, - ¢} of real values, which has the
same sub-index set as that for E,, such th-
at Z,{M. and Z,,1>M. for 1 <v { . And
also, in view of Lermim 1 and corollary i, the
relation n; Q= ([ pit) +Z1 ¢(t))) holds for all
I's when t—>co, where {u{t) o(t)} is the
norming pair satisfying lim FN‘ {(ult)+Z -
t—co .

a(t))}=1lim Pr [N‘,é_ Calt)+Z - alt}]) =
t=oo

@ (Z) for all real value Z_

Thus, it is clearly possible to form E ,
such that for ¢ )0~

i) @ (Zy s,

@) 10(Z,)~8(00){<e, and

®) l¢(zv+1)-¢ (Z) | <e.

Moreover, for any positive integer multip-
lierd R: [0, 1Q] can be made within « of
the corresponding € (Z,) uniformly ; namely,
IRe (0, 2Q1-@(Z ) | ¢, so that substituti-
ng @(-) for Ri [+, + ) in the inequality (§)
créates an error of at most { z+1)¢ in the
partition of all real value Z.

Let (Zy, Zo,, Zy) and (Zyyy Zypyg -..
ZP) denote partitions of (Z,, Z,] and [Zv+1,

'Zp ], respectively, such that intervals in ea-
ch partition be equally spaced and following
ineguaities be satisfied :
) Z,-(Z,~-Z1)/Q= Z,,
i) Zyoy T {(Zo—Zp-1 )/ QS Zy
) Zvee(Z,,, -Z,.}/Q = Zora
(v Z.a_,l'l‘(Z;r'Zp-l)/Qé Z,, and
for a=1,2, v-1,
HO(Zgy) + (Zguy=~2a) /Q-P(Zg, )}~ (@
(Zn:) -9 (Zc[‘ (Za,,l _Za}/Q}} K & and for
B=v+l1, 0+2, - p-1.
|{¢(23+1+(Z&1 -Za)/Q)-6(Zg, }
~{9(Zg)-0(Zg-(Zg, -Zg/Q}1 <.
According to such finite sequence constr-
uctions of {Zi} and {n:} fori=l1,2,...-- 1,
the inequality (6) is simplified as follows ;
|P£10,00 ) ~ PP (0,001 [ { {e+ ( p=2) e+ et}
' F{p+l)e=2 (u+l)e
Since 2 (p+1) is a finite number, P (0,00)
is asymptotically uniform when t—co. This
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“means that for £{=1,2,----- Q.

lim Pr {IP.= r+£} =lim P¢ (0, 00) Z%J
100 [ dee

Therefore, the proof is complete.

From now on, we will discuss about the
frame of proving that IP: and Dy, ..y are
asymptotically independent for a nonnegati-
ve constant h as £—>o0.

Under the assumption that n-orders{n=_0,
1,2, } have been placed by time t, { +
{(n-1) Q + (Q-j) demands are presumed as
the value of Ne=(t/p+Z Vta¥/ 71 to lo-
cate the inventory position IP: at a level r
+jwith IPe=1r+ £(j, £ =1,2 - , Q); that
is,

o
Pr {IPi=r+j} =P {Ne={-j 1t + El P {N.
=

=nQ+<£-j),

where P, {Ne=2-j }* =P {Ni={-j}, if {2
- =0, otherwise.

Let (t/2+Z:1v 197/} = n1Q+ (£-j) and

(/ pH(Zit ) VT 55) = (ni+m) Q+{{)

(=1, 2, -----;b}, where m are non- negative
integers. There also exist 0= £ { 8 for k=
0, 1,2 - , m~1 and #.= 5 such that (t/a+

(Zit e VEe¥ ¥ ) = (ni+k)Q+(4-)), so
that the sum of probabilities (denoted by
/i) associated with IP.=r+j within the
interval {Z:,, Z: + 8] in Figure | is expressed
as follows

m .
ANa= 3 Pr (Ni=(n: +k)Q+ ({-]))
k=0

m
=2 P {Ne={t/u+ (Zi+ &),
k=0
Vv ta!?ps ¥

A, B:

Zi—6/Q Z: Zi+ 3 Zi+ H3Q 2.

Fig 1. Normal Density Carve of Zi

Assume that within the intervals of (Z: ~
8/Q,Z1) and {Zi+ 8, Zi+ 6+ 8/Q) there
are also m different probabilities satisfying

Zi m
J fz, (R)dx= 2 Pr{Ne=mQ +
Z * d=0

(£-j)-d} and

Zi+ 3+ 3/Q m
J fz‘(x}dx%" 2 P [Nu=
Zi+ 3 d=0

{nit+m) Q +(¢-j)+d}, as t—oo,
so the sums of probabilities in A:, of each
Q* probabilities in #1, and of probabilities
in C: can be compared with one another.
Then, if we choose &) 0 such that the rat-
io A1/C, absolutely converge to the value 1,
it follows that

1 ZH‘I .
EIZ; fz, (x)dx — #_ Wi, as t—oco.

This convergence will be the basic idea of
proving the next theorem.
In Figure 1, the real line Z: is broken down

~ into a finite number b+1 of intervals { -co,

Z1), (Zi, Zwm) (j=1,2, - a, a+1,; b—1) and
[ Zs,00) such that Z. (0, Z.r1 ) 0, and Z:,
-Zi= 5, Wi, where 3)0 is chosen as follows
;for 620,

Zt o0
Lo x2/2 gy (e a_
f_oc)]/-?—xe X (s, fz.. =
e X/2 dx (e,

and on the right side of the .mode M.
| AL 11S le¥ 22+ 9 (2+28/QKe

fori=a, a+]1,--,b, and on the left side of
the mode
TP AL R RIS



for i=1,2, et ;a-l, Whence | A-Ci | (Cs-

eand so X JAi-Cil (2 CiceZ e,
=1 iel

since iEIC:gl over I=(0,1,2,-, a,a+],
------ ,b, b+1) with Z.= ~o0

and Za+1 =00,
Morzeover, if Zi-3Q =M,, then
At = = ..é.,e-(zi-ﬁ/Q)zfzg A=
Zi 1 —x?r2
fZ;_a/Qm e dx
i _Zzl
27 q e A
- 1 72 —_ 2t
= v 5ea—Zi/2 — !
B VT fee i ;B:__IZI

L /2 gy > —Ao ge(Zit+ 82
e X dx;m se—{Zit+ 8)

Il

Il

B..
oA B (Tt 0+ 5/Q% o
Ci 2r Q e i =C;

< 11[ Qi e~ (Zit+ /2 =T,
and s0 A; = LQB_; and -%5 +Bi=Ci -
Thus; A1 24y * Bi = Ci, ¥
Theorem 2.

Let (X :n=12 } be a renewal proc-
ess with the identical distribution function
F (x) (0=x ¢{c0) and denote bx N: the cor-
responding counting process,

HF N:— (x,¥) (h= 0) asym
V“&"Jﬁta pgD(t, t+h)

ptotically converges to a strictly unimodal
distribution & (x, y), then under a <{Q,r>
policy FIP;,D(;,:H.J {r+L,y) converges to
% #(+, y) as t—>oo, where L= (1,2, Q)
Proof. -

Ni-t
Let Z:='—""ﬁ‘

Viel i
# (%, y=k) is strictly unimodal, shown in

« Assume that for k >0

Figure 2.

=J,Z:+ s+64Q _1 e~ X/2 g4y Let z' E 85 (j=1,2,-+, Q form the dema-
—Zit+ 8 Vv Zn nd materialization set of Z:. associated with
Dt,t -+
A
y{x y=k)
k AR Zs

Fig 2. Asymptotically, strietly unimodal Density Curve of th

such that under the assumption of n order
placements by time t,
Ne=[t/p +2'(n) VT 1=+ (n-1)-
Q+(Q—j)=nQ+ ( £-j).
where Z! (n1)=2. + &, With 0<¢q, < Z:

-Zi-; ¥i (as defined for Figure 1) corresp-

T » y=k)

(
D(s,tﬂ]

. onding to the relation [t{y+(2i_'+ E;Jn, >
VETTE ) = (4 p+ZLV T )+ miQ for

mi=0, 1, 2,---, (D/Q] with
Di=(t/u+Z VTR - tlp+ 2,
Vit /g,

Define followings: for i=2, 3,3 b,

x
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Pt (=P, (No= (/g +(Z1_ + &h, >
Ve uT), Dit, ¢ +h) =k}, and

_ D
R (1) = d)il P, (Ne=(t/p+Z" . VET)

+4, D, t+n) =Kl
By the assumptions,

L{x)
n=0
{y=k}

2 Fz.,D(t, t+h)
=P {Z;=x, D (t, t+h) =Kk}
as t—00, where L(x)=(t/p +xVte% u°)
Therefore,
RY* ()= #(Z,_,, y=K) as t—oq
where Z! ={Zi Zi]

=1,

Moreover, under the (Q, r}> model, Theo-
rem 1 {see Sivazlian {4} shows that

P{lPi=r+i}=P {Ne={-i}
Fay 1
+ I P:{Nie=nQ+l{-j}— 0 as t—oo,
n=il
where Pr {Ni=£-j =P, (Ny={-7 ), if £

=0 otherwise.
It follows that
(DyQ2
m,zz{) ::1;' (0= él (0
-+ A Zi, y=k
Hence,

FIPHD(s,Hb) (r+L,y} =P {IP.<r+L,
Dibuny Sy} (L=1,2,--5Q)

L v
= X 2 P {IP;=r+j,D(:,m.J=k}
j=t k=0
I?i.%(P{N {-j, D =k}*
.'j-_;\l k=0 T t= 1, (t,t+hj
\\.‘oo
+ ‘21 P {Ne=0Q+£-5,D (1,09 =k 1)
1= o
IZ', % (E P: (Ne= [t/
o= r t— ¢+
i=1 k=0 n=0 zh)
m D{t,tﬂJ—k})
L ¥

/Q) .
=% 3 (%% P,_,,(tn
i=L k=0 i=1 m;=

~ L y b 1 ]
= 2 kEO{Zl —Q*'ﬁ"(z,_, . Y=k}
]= — l=
~L ¥ 1

= = «F(- k)

7=l k=0
=.%}_ < F{wy).

Thus, the proof is complete,

3. Conclusion

Through this study, a continuous -review
inventory system {Q,r) was treated. Spe
cifically, Theorem 2 shows that IP: and
Dy, 1+318Fe asymptoticaily mutually indepen-
dent, when they form an asymptotic unimo-
dal joint distribution. However, an exten-
sion to this work may be possible by analy-
zing the process {IP.} in view of a new ren-
ewal process at each reorder point,

The approach shown in this study ie exp-
ected easily applicable to investigate the
periodic - review systems such as (R, 1, TO
systems,

Therefore, these results may be evaluated
to lead to the analytical analyses of some
inventory systems which have been treated
under some restrictions on demand process-
es.
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