Kyungpook Math. J.
Volume 22, Number 2
December, 1932

INFINITESIMAL VARIATIONS PRESERVING THE RICCI TENSOR
OF GENERIC SUBMANIFGLDS OF AN ODD-DIMENSIONAL SPHERE

By U-Hang Ki and Dae-Ho Jin

i, Introductjon

Recently many authors have studied the so-called generic submanifold of an
odd-dimensional unit sphere ng_'l(l) under the condition that the induced
structure on the submanifold is normal ([2]) or antinormal ([4], [6]).

On the other hand, K.Yano, J.S.Pak and one of the present authors have
studied infinitesimal variations of a Riemannian manifold ([7], [9]) and thoss of
hypersurfaces of a Sasakian manifold ([8]), and proved the following Theorem
A([2]) and B([9]).

THEOREM A ([2]). Let M be an n-dimensional complete generic submanifold
with flal normel connection of an odd-dimensional unil sphere g (1) aud let

fntlory b tangent to M. If the
siructure induced on M is normal and the mean curvature vector of M {is parallel

the Sasakian structure vector defined on S

in the normal bundle, then M is a pythagorean product of the form
S (r )X e X S (),
where py, -+, py are odd number =1, r12+---+rN2=1, N=2m+2-n, (N=n+2),
€D being p-dimensional spheve with radius > 0.
THEOREM B ([9]). Let M" #e a complete hypersurface wilh constant mean
curvature of a wunil spherve. If an infinitesimal normal and parvallel variation

?ckzxk+;z Cke, u>0, preserves the Ricci temsor of M”, then M"isa sphere s"
ar SPxS"7P,

The main purpose of the present paper is to characterize generic submanifolds
M of an odd-dimensional unit sphere SMHCI) with infinitesimal normal and

parallel variation which preserves the Ricci tensor of M.
1. Preliminaries

Let Szmﬂ(l) be a (Zm+1)-dimensional unit sphere covered by a system of
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coordinate neighborhoods {U 35"} and (F ;’, G V") the set of structure tensors
of $”"71(1), that is, F ;' being the Sasakian structure tensor of type (1,1), G;
the Riemannian metric tensor of S ”’H(l) and V" the Sasakian structure vector,
where here and in the sequal, the indices %,7,7 and % run over the range (1,2,
3, (Cn+1)].

Let M be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {¥ : x%} and isometrically immersed in ke b by
the immersion 7 : M ——-ngu(l). We identify #(M) with M itself and represent
the immersion locally by yh:yk(x“), where here and throughout this paper the
indices a,b,¢,d and e run over the range {1,2,3,-,n}. If we put B:= Byh, d,=

¢/0x", then B : are n-linearly independent vectors of 5‘2"'“(1) tangent to M.
Denoting by g, the fundamental metric tensor of M, we have

- ipi
(1.1 £24=6;B B,
because the immersion is isometric. We represent by N : p(=2m+1-n) mutually

orthogonal unit normals to M. Then we have GJ.,.Bb’N:‘-so and G ij,,»jN;= L,y

&yy being the fundamental metric tensor of the normal bundle. In what follows
we denote by p the codimension of M and the indices #,y,2,#,v and @ run over
the range {1%,2%, .-, p¥l.

A submanifold M of S™**(1) is called a generic (an anfi-holomorphic) sub-
manifold if the normal space N p(M) of M at any point pEM is mapped into
the tangent space T,(M) by action of the structure tensor F of §7 161y, that
is, FNP(M)CTP(M) for each point pEM ([2], [4], [5], [6]).

In this case, we can put in each coordinate neighborhood

(L.2) F‘_}; Bbi _ fba B: T f; N"', F'_k N: b f: B:,
where f: is a tensor field of type (1,1) defined on M, fj a local 1-form for
each fixed index x and fi= 787g,,» Also, we can put the Sasakian structure
vector V" of the form

(1.3) V=B N},

f% and f* being vector fields defined on M and normal bundle of M respectively.

Now applying the operator F to (1.2) and (1.3) and using the definition of
the Sasakian structure tensors, we easily verify that ([2], [4], [5], [6])
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Al A e
(1.4) | fef:.:— x‘f:. f:fﬂy:a-i_fxfy, fef"i_fx.f‘:l,
lfefey:cl’ gde-f;dfbezgcb_f:fﬁ"fcfbs

where ft.=fegm and fz=fygy:.

Denoting f;=f, Zy0r fox=F," gy, and [ =f, ¢, then we can see from (L.4)
that f,=-f, and f,,=f,.

Denoting by V, the operator of van der Waerden-Borotolotti covariant differ-
entiation with respect to the Christoffel symbols formed with g,, it is well
known that ([2], [4], [5], [6])

(1.5) Vs =—guaf “+0. Ly th S —h Sy
(L VS, =g 0T

.7 VSfy=fythf,

(1.8) Vit =5

. bt T =hF

where }itc;F is the second fundamental tensor of M and szx=kcb"gy,,gba, "™
-1
=(g) -

The aggrate (ff:, .. f:, % 5 satisfying (1.4) is said to ke normal(partially
integrable) if

(1.10) b, fy +h, S =0,

(L.1D) =1V =V =V D = (VoS =V I =0
holds respectively ([2], [3]).

Since S'E"’H(l) is unit sphere, equations of Gauss, Codazzi and Ricci are
respectively

(1.12) K a’cba =0 :r g™ Jigda + ha’axh:b = hc:hdzb’

(1.13) V' —V.hs,=0,

(1.14) K, *<h h® -n"n’

decy decy cendy’



320 U-Hang Ki and Dae-Ho Jin

K dc: and K, y’ being the curvature tensor M and that of the normal connection
of M respectively.

2. Infinitesimal normal and parallel variations of generic submanifolds of
an odd-dimensional sphere

We now consider an infinitesimal variation of the submanifold M of $°"*'(1)
-given by
2.1) ¥ =y"+&" e,
-5* being a vector of SZ"'H(I) defined along M and € is an infinitesimal. We
now put in each coordinate neighborhood
(2.2) &=+,
where &% is a vector field on M and £ a function for each fixed index x.
When £°=0, thatis, when the variation vector 5" is ncrmal to the submanifold
we say that the variation is w#ormal, and when the tangent space at a point
h % 5 = = i -
{(y") of the submanifold and that at the correspoinding point (_v; ) of the

r

submanifold are parallel, we say that the variation is parallel ([7],19]).

In order for a normal variation of a submanifold to he parallel, it is necessary
and sufficient that

(2.3) V=0

=1
‘4

that is, the variation vector EIN;T is parallel in the normal bundie ([7]).

In this case, we have from the Ricci identity for £
o% 7 ¥ x
0=Vd\7c:; —chnx’,: _Kdry &Y,

“Thus if the submanifold M admits p linearly independent infinitesimal normal

-and parallel variations, then we have K m,’=0.

LEMMA 1 ([9]). Let M be an n-dimensional submanifold of an odd-dimensional
unit sphere ng*l(l). If the submanifold M admiis 2m-+1—n linearly independent

infinitesimal normal and parallel variation preserving the Ricci tensor of M, then
we have

v, e de 5 ¥ -
(2.4) R py b, by, 0 R R g, =0,

ch o
«where hy: g }zt_by being the mean curvature vector of M.
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From now on we assume that the induced structure satisfying (1.4) on M is
partially intergrable. Then we have

@5 Uty SN = g S 4 S fy= T
Transvecting (2.5) with fi and using (1.4), we find
(2.6) Bt S = oo I F =P ) =0 4L S,
where we have put
- z ex b
(2. l') sz shbeyf fz s
from which, transvecting f° and denoting p2=fxf‘.
A=ty OF* =P, 1]~ (A= 6O
Substituting this into (2.6), we find
(2.8) A= 0 Whf *= = (1= 00 [F,+ [(A-6DP J+1 P F 1 f.

Putting P, =Pz;”gm, then P, is symmetric for any index because of (1.9)

and (2.7). If we take the skew-symmetric part with respect to x and z and use
(1.9), then we obtain from (2.8)

2.9 (fawa;fw—foywsz)f‘::0'

If we assume that the function 1- p2 does not vanish almost everywhere on
M, then (2.8) gives

(2.10) BTy =Ry Iy~ F
where we have put
2 w
(2.1 RyﬂzP st Vi-pfP }mf A
Transvecting (2.9) with f : and f: respectively and combining these equations,
we find
(2.22) 63 o8 ym)f“’ =0.

This means that R,,, is symmetric for any index.

x

dis =0, by transvecting (1.14)

If the normal connection of M is flat, thatis, K

with f; and making use of (2.10), we find

(2.13) (R R, — Ry R =0y £~ 2, () 1.

First of all, we prove
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LEMMA 2, Let M be a generic submanifold with flat normal connection of an
odd-dimensional unit sphere - +1(1). If the induced structure on M is partially
integrable and the function l—f,f" does not vanish almost everywhere, then we

have f=0o0r p=1.
PROOF. Transvecting (2.13) with f* f: and using (1.4) and (2.10), we get
(2.14) (RM’R,;" —R,, R =g f~0.f

because the function 1—,02 is nonzero almost everywhere.
If we transvect (2.13) with f, and use (2.10) and (2.14), then we get

(2- 15) g yzf x(kdezft +f rz‘r) = z(hdeyf ’ +fﬂ'.1')'
from which, contract with respect to y and z
(2.16) B=Dhy, [+ )f*=0.

If we take the skew-symmetric part with respect to y and z of (2.15), then
we have

f(hy, f “+f, ay) =F (g f “+F
which, transvect with f* and use (2.16),
(2.17) O gy F £ ) (D~1)=0,

Transvecting (2.17) with f” and using (1.4) and (2.10), we have g*(p—1)
=0. Therefore, Lemma 2 is proved.

LEMMA 3. Let M be an n(#2m)-dimensional generic submanifold of an odd-
ng“(l). Suppose that M admits 2m-+1—n linearly
independent infinitesimal normal and parallel wvariations preserving ithe Ricci
iensor of M and ithe induced struclure on M is paritially iniegrable. If the

dimensional wunit sphere

Sunction 1—f, f* does not vanish almost everywhere, thenthe induced structure on
M is normal.

PROOF. Since p#1, we see from Lemma 2 that f* vanishes identically on M.
We have the identity

(2.18) VA A B S\ AR A G A e v
Transvecting (1.6) withf: and using (1.4) and (1.8) with f*=0, we find
[V f;=0.
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Now, computing the length of square of V, fg, we have
(2.19) NP S N N e
On the other hand, from the Ricci identity, we have

VS =V ==K, f],
'wwhich implies
b ol ¢
V0 =,
Dbecause of (1.6) with f =0, Thus, it follows that
B 2 c__ Xy e o€ 0¥
(2.20) VI == Dp+ B R =b 1y 1,
where szRyxy .
Substituting (2.19) and (2.20) into (2.18), we get
1 2 ch
SV F AV kK i B +np=0.
Transvecting (2.4) with fb and using (1.8) and (2.10) with f*=0, we get
cb z
Iy 5 —hR, y-—ngxy:o.
The last two relationships give
X x
chb +bec =0

Thus, (1.10) holds because of (1.6) with f*=0. This completes the proof of the
lemma.

Combining Theorem A,B and Lemma 2 and 3, we conclude

THEOREM 4. Let M be an n-dimensional complete generic submanifold of an
ngﬂ(l). Suppose that M admits 2m+1—n linearly
independent infinitesimal wnormal and parallel variation preserving the KRicci
tensor of M, the induced structure on M is partially integrable and the function

odd-dimensional unil spheve

1- fx " does not vanish almost everywhere. If the mean curvature vector of M is

parallel in the normal bundle, then M is
S, xS or PR XS (ry),

awhere py, =, P, are odd number =1, 72+---+72 =1, N=2m+2—n, (N+#£n+2),
1 N 1 N
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