INFINITESIMAL VARIATIONS PRESERVING THE RICCI TENSOR OF GENERIC SUBMANIFOLDS OF AN ODD-DIMENSIONAL SPHERE

By U-Hang Ki and Dae-Ho Jin

0. Introduction

Recently many authors have studied the so-called generic submanifold of an odd-dimensional unit sphere $S^{2m+1}(1)$ under the condition that the induced structure on the submanifold is normal ([2]) or antinormal ([4], [6]).

On the other hand, K. Yano, J. S. Pak and one of the present authors have studied infinitesimal variations of a Riemannian manifold ([7], [9]) and those of hypersurfaces of a Sasakian manifold ([8]), and proved the following Theorem A([2]) and B([9]).

THEOREM A ([2]). Let M be an n-dimensional complete generic submanifold with flat normal connection of an odd-dimensional unit sphere $S^{2m+1}(1)$ and let the Sasakian structure vector defined on $S^{2m+1}(1)$ be tangent to M. If the structure induced on M is normal and the mean curvature vector of M is parallel in the normal bundle, then M is a pythagorean product of the form

$$S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N),$$

where p_1, \dots, p_N are odd number ≥ 1 , $r_1^2 + \dots + r_N^2 = 1$, N = 2m + 2 - n, $(N \neq n + 2)$, $S^b(r)$ being p-dimensional sphere with radius r > 0.

THEOREM B ([9]). Let M^n be a complete hypersurface with constant mean curvature of a unit sphere. If an infinitesimal normal and parallel variation $\bar{x}^h = x^h + \mu C^{h\varepsilon}$, $\mu > 0$, preserves the Ricci tensor of M^n , then M^n is a sphere S^n or $S^p \times S^{n-p}$.

The main purpose of the present paper is to characterize generic submanifolds M of an odd-dimensional unit sphere $S^{2m+1}(1)$ with infinitesimal normal and parallel variation which preserves the Ricci tensor of M.

1. Preliminaries

Let $S^{2m+1}(1)$ be a (2m+1)-dimensional unit sphere covered by a system of

coordinate neighborhoods $\{U:y^h\}$ and (F_j^h, G_{ji}, V^h) the set of structure tensors of $S^{2m+1}(1)$, that is, F_j^h being the Sasakian structure tensor of type (1,1), G_{ji} the Riemannian metric tensor of $S^{2m+1}(1)$ and V^h the Sasakian structure vector, where here and in the sequal, the indices h, i, j and k run over the range $\{1, 2, 3, \cdots, (2n+1)\}$.

Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V: x^a\}$ and isometrically immersed in $S^{2m+1}(1)$ by the immersion $i: M \longrightarrow S^{2m+1}(1)$. We identify i(M) with M itself and represent the immersion locally by $y^h = y^h(x^a)$, where here and throughout this paper the indices a,b,c,d and e run over the range $\{1,2,3,\cdots,n\}$. If we put $B_a^h = \partial_a y^h$, $\partial_a = \partial_a y^a$, then B_a^h are n-linearly independent vectors of $S^{2m+1}(1)$ tangent to M. Denoting by g_{ch} the fundamental metric tensor of M, we have

$$g_{cb} = G_{ii}B_c^j B_b^i,$$

because the immersion is isometric. We represent by $N_x^h p(=2m+1-n)$ mutually orthogonal unit normals to M. Then we have $G_{ji}B_b^jN_x^i=0$ and $G_{ji}N_x^jN_y^i=g_{xy}$, g_{xy} being the fundamental metric tensor of the normal bundle. In what follows we denote by p the codimension of M and the indices x, y, z, u, v and w run over the range $\{1^*, 2^*, \dots, p^*\}$.

A submanifold M of $S^{2m+1}(1)$ is called a *generic* (an *anti-holomorphic*) submanifold if the normal space $N_p(M)$ of M at any point $p \in M$ is mapped into the tangent space $T_p(M)$ by action of the structure tensor F of $S^{2m+1}(1)$, that is, $FN_p(M) \subset T_p(M)$ for each point $p \in M$ ([2], [4], [5], [6]).

In this case, we can put in each coordinate neighborhood

$$(1.2) F_i^h B_b^i = f_b^a B_a^h - f_b^x N_x^h, F_i^h N_x^i = f_x^a B_a^h,$$

where f_b^a is a tensor field of type (1,1) defined on M, f_c^x a local 1-form for each fixed index x and $f_x^a = f_c^y g^{ca} g_{xy}$. Also, we can put the Sasakian structure vector V^h of the form

$$(1.3) V^h = f^a B_a^h + f^x N_x^h,$$

 f^a and f^x being vector fields defined on M and normal bundle of M respectively. Now applying the operator F to (1.2) and (1.3) and using the definition of the Sasakian structure tensors, we easily verify that ([2], [4], [5], [6])

(1.4)
$$\begin{cases} f_c^e f_e^a = -\delta_c^a + f_c^x f_x^a + f_c f^a, \ f_c^e f_e^x = -f_c f^x, \\ f_c^e f_e^a = -f^x f_x^a, \ f_x^e f_g^y = \delta_x^y - f_x f^y, \ f_e f^e + f_x f^x = 1, \\ f_e^e f_e^y = 0, \ g_{de} f_c^d f_b^e = g_{cb} - f_c^x f_{xb} - f_c f_b, \end{cases}$$

where $f_c = f^e g_{ce}$ and $f_x = f^y g_{yx}$.

Denoting $f_{cb} = f_c^a g_{ba}$, $f_{cx} = f_c^y g_{yx}$ and $f_{xc} = f_x^a g_{ac}$, then we can see from (1.4) that $f_{cb} = -f_{bc}$ and $f_{cx} = f_{xc}$.

Denoting by ∇_c the operator of van der Waerden-Borotolotti covariant differentiation with respect to the Christoffel symbols formed with g_{cb} , it is well-known that ([2], [4], [5], [6])

(1.5)
$$\nabla_{f_{b}}^{a} = -g_{cb}f^{a} + \delta_{c}^{a}f_{b} + h_{cb}^{x}f_{x}^{a} - h_{cx}^{a}f_{b}^{x}$$

(1.6)
$$\nabla_{c} f_{b}^{x} = g_{cb} f^{x} + h_{ce}^{x} f_{b}^{e},$$

$$\nabla_c f_b = f_{cb} + h_{cb}^x f_x,$$

$$\nabla_c f^x = -f_c^x - h_{cc}^x f^e,$$

$$(1.9) h_{cex} f^{ey} = h_{ce}^{y} f_{x}^{e},$$

where h_{cb}^{x} is the second fundamental tensor of M and $h_{cx}^{a} = h_{cb}^{y} g_{yx} g^{ba}$, $(g^{ba})^{-1}$.

The aggrate $(f_c^a, g_{cb}, f_c^x, f^a, f^x)$ satisfying (1.4) is said to be normal(partially integrable) if

$$(1.10) h_{ce}^{x} f_{b}^{e} + h_{eb}^{x} f_{c}^{e} = 0,$$

$$(1.11) f_c^e \nabla_e f_b^x - f_b^e \nabla_e f_c^x - (\nabla_c f_b^x - \nabla_b f_c^x) f_e^x - (\nabla_c f_b - \nabla_b f_c) f^x = 0$$

holds respectively ([2], [3]).

Since $S^{2m+1}(1)$ is unit sphere, equations of Gauss, Codazzi and Ricci are respectively

$$(1.12) K_{dcb}^{\ a} = \delta_d^a g_{cb} - \delta_c^a g_{db} + h_d^a x h_c^x - h_{cx}^a h_d^x,$$

$$\nabla_d h_{c,h}^x - \nabla_c h_{d,h}^x = 0,$$

(1.14)
$$K_{dcy}^{\ x} = h_{de}^{\ x} h_{ce}^{\ y} - h_{ce}^{\ x} h_{de}^{\ e},$$

 K_{dcb}^{a} and K_{dcy}^{a} being the curvature tensor M and that of the normal connection of M respectively.

Infinitesimal normal and parallel variations of generic submanifolds of an odd-dimensional sphere

We now consider an infinitesimal variation of the submanifold M of $S^{2m+1}(1)$ given by

$$(2.1) \overline{y}^h = y^h + \xi^h(x)\varepsilon,$$

 ξ^h being a vector of $S^{2m+1}(1)$ defined along M and ε is an infinitesimal. We now put in each coordinate neighborhood

(2.2)
$$\xi^h = \xi^a B_a^h + \xi^x N_x^h$$
,

where ξ^a is a vector field on M and ξ^x a function for each fixed index x.

When $\xi^a = 0$, that is, when the variation vector ξ^h is normal to the submanifold we say that the variation is *normal*, and when the tangent space at a point (y^h) of the submanifold and that at the corresponding point (\bar{y}^h) of the submanifold are parallel, we say that the variation is *parallel* ([7], [9]).

In order for a normal variation of a submanifold to be parallel, it is necessary and sufficient that

$$\nabla_{c} \xi^{x} = 0,$$

that is, the variation vector $\xi^x N_x^h$ is parallel in the normal bundle ([7]).

In this case, we have from the Ricci identity for ξ^x

$$0 = \nabla_d \nabla_c \xi^x - \nabla_c \nabla_d \xi^x = K_{dcy}^x \xi^y.$$

Thus if the submanifold M admits p linearly independent infinitesimal normal and parallel variations, then we have $K_{dcy}^{\quad x}=0$.

LEMMA 1 ([9]). Let M be an n-dimensional submanifold of an odd-dimensional unit sphere $S^{2m+1}(1)$. If the submanifold M admits 2m+1-n linearly independent infinitesimal normal and parallel variation preserving the Ricci tensor of M, then we have

$$(2.4) h_y h_c^y h_b^e + n h_{cbx} - h_{dey} h_x^{de} h_c^y - h_x g_{cb} = 0,$$

where $h_y = g^{cb}h_{cby}$ being the mean curvature vector of M.

From now on we assume that the induced structure satisfying (1.4) on M is partially integrable. Then we have

(2.5)
$$(h_{cev}f^{ex})f_b^y = (h_{bev}f^{ex})f_c^y + f_c^x f_b - f_b^x f_c^x.$$

Transvecting (2.5) with f_a^b and using (1.4), we find

$$(2.6) h_{cex} f^{ex} - (h_{cey} f^y) f^{ex} f_z = P_{zy}^x f_c^y - \delta_z^x f_c + f_z f^x f_c,$$

where we have put

$$(2.7) P_{zy}^{x} = h_{bey} f^{ex} f_{z}^{b},$$

from which, transvecting f^z and denoting $\rho^2 = f_x f^x$,

$$(1-\rho^2)(h_{cev}f^y)f^{ex} = P_{zv}^x f^z f_c^y - (1-\rho^2)f^x f_c$$

Substituting this into (2.6), we find

$$(2.8) (1-\rho^2)h_{cex}f^{ex} = -(1-\rho^2)\delta_z^x f_c + \{(1-\rho^2)P_{zy}^x + f_z P_{yw}^x f^w\}f_c^y.$$

Putting $P_{zyx} = P_{zy}^{\ \ w} g_{wx}$, then P_{zyx} is symmetric for any index because of (1.9) and (2.7). If we take the skew-symmetric part with respect to x and z and use (1.9), then we obtain from (2.8)

(2.9)
$$(f_z P_{ywz} f^w - f_x P_{ywz} f^w) f_z^y = 0.$$

If we assume that the function $1-\rho^2$ does not vanish almost everywhere on M, then (2.8) gives

(2.10)
$$h_{ex}^{c} f_{y}^{e} = R_{yz}^{x} f_{c}^{z} - \delta_{y}^{x} f_{c},$$

where we have put

(2.11)
$$R_{yzx} = P_{yzx} + 1/1 - \rho^2 f_z P_{ywx} f^w.$$

Transvecting (2.9) with f_u^c and f_a^c respectively and combining these equations, we find

$$(2.22) (f_z P_{ywx} - f_x P_{ywz}) f^w = 0.$$

This means that R_{xyz} is symmetric for any index.

If the normal connection of M is flat, that is, $K_{dcy}^{\alpha} = 0$, by transvecting (1.14) with f_{c}^{c} and making use of (2.10), we find

$$(2.13) (R_{wz}^{x} R_{vy}^{w} - R_{wyz} R_{v}^{xw}) f_{d}^{v} = \delta_{z}^{x} (h_{dey} f^{e}) - g_{yz} (h_{de}^{x} f^{e}).$$

First of all, we prove

LEMMA 2. Let M be a generic submanifold with flat normal connection of an odd-dimensional unit sphere $S^{2m+1}(1)$. If the induced structure on M is partially integrable and the function $1-f_x f^x$ does not vanish almost everywhere, then we have $f^x=0$ or p=1.

PROOF. Transvecting (2.13) with $f^u f^d_u$ and using (1.4) and (2.10), we get

$$(2.14) (R_{wz}^{\ \ x}R_{vy}^{\ \ w} - R_{wyz}R_{v}^{\ xw})f^{v} = g_{yz}f^{x} - \delta_{z}^{x}f^{y}$$

because the function $1-\rho^2$ is nonzero almost everywhere.

If we transvect (2.13) with f_x and use (2.10) and (2.14), then we get

(2.15)
$$g_{yz}f^{x}(h_{dex}f^{e}+f_{dx})=f_{z}(h_{dey}f^{e}+f_{dy}),$$

from which, contract with respect to y and z

$$(2.16) (p-1)(h_{dex}f^{e}+f_{dx})f^{x}=0.$$

If we take the skew-symmetric part with respect to y and z of (2.15), then we have

$$f_z(h_{dey}f^e + f_{dy}) = f_y(h_{edz}f^e + f_{dz}),$$

which, transvect with f^z and use (2.16),

(2.17)
$$\rho^2(h_{dey}f^e + f_{dy})(p-1) = 0.$$

Transvecting (2.17) with f^{dy} and using (1.4) and (2.10), we have $\rho^4(p-1)^2$ =0. Therefore, Lemma 2 is proved.

LEMMA 3. Let M be an $n(\neq 2m)$ -dimensional generic submanifold of an odd-dimensional unit sphere $S^{2m+1}(1)$. Suppose that M admits 2m+1-n linearly independent infinitesimal normal and parallel variations preserving the Ricci tensor of M and the induced structure on M is partially integrable. If the function $1-f_x f^x$ does not vanish almost everywhere, then the induced structure on M is normal.

PROOF. Since $p\neq 1$, we see from Lemma 2 that f^x vanishes identically on M. We have the identity

(2.18)
$$\nabla^{b} [f_{x}^{c} \nabla_{c} f_{b}^{x}] = \frac{1}{2} \|\nabla_{c} f_{b}^{x} + \nabla_{b} f_{c}^{x}\|^{2} - \|\nabla_{c} f_{b}^{x}\|^{2} + f_{x}^{c} \nabla^{b} \nabla_{c} f_{b}^{x}.$$

Transvecting (1.6) with f_x^c and using (1.4) and (1.8) with $f^x=0$, we find $f_x^c \nabla_c f_b^x=0$.

Now, computing the length of square of $\nabla_c f_b^x$, we have

On the other hand, from the Ricci identity, we have

$$\nabla_d \nabla_c f_h^x - \nabla_c \nabla_d f_h^x = -K_{dch}^e f_a^x$$

which implies

$$(\nabla^b \nabla_c f_b^x) f_x^c = K_{cb} f^{bx} f_x^c$$

because of (1.6) with $f^x=0$. Thus, it follows that

$$(2.20) \qquad (\nabla^{b}\nabla_{c}f_{b}^{x})f_{x}^{c} = (n-1)p + h_{x}R^{x} - h_{c}^{x}h_{b}^{e}f_{y}^{c}f^{by},$$

where $R_x = R_{yx}^{y}$.

Substituting (2.19) and (2.20) into (2.18), we get

$$\frac{1}{2} \|\nabla_c f_b^x + \nabla_b f_c^x\|^2 - h_{cb}^x h_x^{cb} + h_x R^x + np = 0.$$

Transvecting (2.4) with f^b and using (1.8) and (2.10) with $f^x=0$, we get

$$h_{cbx}h_{y}^{cb} - h_{z}R_{xy}^{z} - ng_{xy} = 0.$$

The last two relationships give

$$\nabla_c f_b^x + \nabla_b f_c^x = 0$$
.

Thus, (1.10) holds because of (1.6) with $f^x=0$. This completes the proof of the lemma.

Combining Theorem A, B and Lemma 2 and 3, we conclude

THEOREM 4. Let M be an n-dimensional complete generic submanifold of an odd-dimensional unit sphere $S^{2m+1}(1)$. Suppose that M admits 2m+1-n linearly independent infinitesimal normal and parallel variation preserving the Ricci tensor of M, the induced structure on M is partially integrable and the function $1-f_xf^x$ does not vanish almost everywhere. If the mean curvature vector of M is parallel in the normal bundle, then M is

$$S^{2m}(r)$$
, $S^{p}(r_1) \times S^{2m-p}(r_2)$ or $S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N)$,

where p_1, \dots, p_N are odd number $\geq 1, r_1^2 + \dots + r_N^2 = 1, N = 2m + 2 - n, (N \neq n + 2).$

Kyungpook University

REFERENCES

- [1] C-H. Chung and U-H. Ki, Converse problems of S"XS", Honam Math. J. 3(1981), 3-12.
- [2] E. Pak, U-H. Ki and Y.H. Kim, Generic submanifolds of an odd-dimensional sphere, to appear in J. of Korean Math. Soc.
- [3] Suzuki, H., Notes on (f, U, V, u, v, λ) -structure, Kōdai Math. Sem. Rep., 25(1973), 153—162.
- [4] U-H. Ki, On generic submanifolds with antinormal structure of an odd-dimensional sphere, Kyungpook Math. J. 20(1980), 217-229.
- [5] _____, Einstein generic submanifolds of an odd-dimensional sphere, Kyungpook Math, J. 21(1981), 213-224.
- [6] _____, and Y.H. Kim, Generic submanifolds with parallel mean curvature vector of an odd-dimensional sphere, Kodai Math. J. 4(1981), 353-370.
- [7] Yano, K., Infinitesimal variations of submanifolds, Kōdai Math. Sem Rep., 1(1978), 30-44.
- [8] Yano, K., and U-H. Ki., Infinitesimal variations of hypersurfaces of Sasakian manifold, Tensor. N.S. 33(1979), 1-10.
- [9] _____, and J.S. Pak, Infinitesimal variations of the Ricci tensor of a submanifold, Kodai Math. Sem. Rep., 29(1978), 271-286.