A NOTE ON UI-IDEALS

By Young Soo Jo and Sang Ki Lee

1. Introduction

In [6], \mathcal{U} -ideals and translations of an universal algebra \mathcal{U} are introduced by Tae Ho Choe. He used unary algebraic polynomials of \mathcal{U} to construct \mathcal{U} -ideal. In this paper, we obtain a necessary and sufficient condition between \mathcal{U} -ideal N and congruence relation θ_N induced by N. Finally we find some properties of topological \mathcal{U} -ideal. The terminologies and the definitions used here mainly follow [8] for universal algebras, [4] for category and [2] for topology. Throughout this paper, all universal algebras will be of finite type, i.e., by a τ -algebra we mean a pair < A, $F = (f_i)_{i \in I} >$, where A is a set, F a family of operations: maps f_i of A^{mi} into A, where mi is the arity of the f_i , that is nonnegative integer and I is a finite ordered set $\{1, 2, \ldots, t\}$. Then we say that it is of arity type $\tau = (m1, m2, \ldots mt)$. Throughout this paper, we assume that F has a distinguished nullary operation o, which we call the zero of \mathcal{U} .

Denote U[x] to be the set of all unary algebraic polynomials over U_0 .

2. Ul-ideals

LEMMA 2.1. Let \mathbb{U} and \mathcal{L} be τ -algebras and h a homomorphism of \mathbb{U} into \mathcal{L} . Then for any unary algebraic polynomial $p(x) \in \mathbb{U}[x]$ there exists $q(x) \in \mathcal{L}[x]$ such that hp(x) = q(x)h, i.e., h(p(a)) = q(h(a)) for all $a \in A$.

LEMMA 2.2. Let Ul and \mathcal{L} be τ -algebras and h a homomorphism of Ul onto \mathcal{L} . Then for any $q(x) \in \mathcal{L}[x]$ there exists $p(x) \in Ul[x]$ such that hp(x) = q(x)h.

THEOREM 2.1. Let VI and \mathcal{L} be τ -algebras and h a homomorphism of VI into \mathcal{L} . Let M be a \mathcal{L} -ideal. Then $h^{-1}(M)$ is also VI-ideal.

PROOF. For any $p(x) \in \mathcal{U}[x]$ if $p(a) \in h^{-1}(M)$ for some $a \in h^{-1}(M)$. By Lemma 2.1, there exists $q(x) \in \mathcal{L}[x]$ such that hp(x) = q(x)h. Then $h(p(a)) = q(h(a)) \in M$. If $b \in h^{-1}(M)$ then $h(p(b)) = q(h(b)) \in M$.

THEOREM. 2.2. Let VI and \mathscr{L} be τ -algebras and h a homomorphism of VI onto \mathscr{L} . Let N be an VI-ideal. If $Ker\ h \subset \theta_N$ then h(N) is a \mathscr{L} -ideal.

PROOF. For any $q(x) \in \mathcal{L}[x]$ if $q(b) \in h(N)$ for some $b \in h(N)$ then there exists $a \in N$ such that h(a) = b. Then by Lemma 2.2 there exists $p(x) \in \mathcal{U}[x]$ such that hp(x) = q(x)h, thus $h(p(a)) = q(b) \in h(N)$. Then $(p(a), n) \in Ker \ h$ for some $n \in N$. Since $Ker \ h \subset \theta_N$, $p(a) \in N$. Then for any $d \in h(N)q(d) = q(h(e)) = h(p(e)) \in h(N)$, where $e \in N$ and h(e) = d.

THEOREM 2.3. The intersection of any VI-ideals of τ -algebra is an VI-ideal.

Therefore $\{N_i|i\in I\}$ forms a complete lattice, its greatest element is $\mathcal{V}l$ and least element is $\bigcap_{i\in I}N_i$. Denote $\mathcal{V}l_0$ to be the set of all $\mathcal{V}l$ -ideals (about 0).

DEFINITION 2.2. [6] Let \mathcal{U} be a τ -algebra and let $\phi = \{\phi_a(x) \in \mathcal{U} \mid x \mid a \in A\}$ be a set of nonidentically zero unary algebraic polynomials such that $\phi_a(x) = 0$ has the unique solution a in \mathcal{U} . Such a ϕ is called a *translation* (about 0) of \mathcal{U} .

DEFINITION 2.3. [6] Let \mathcal{U} be a τ -algebra and let ϕ be a translation of \mathcal{U} . ϕ is said to be *left invertible* if $\phi_a(x) \in \phi$ has a left inverse $\Psi_a(x) \in \mathcal{U}[x]$ (in the sense that $\Psi_a(\phi_a(x)) = x$) and $\phi_0(x) = x$.

3. Topological \u03c4-algebras

DEFINITION 3.1. [7] A topological τ -algebra is an object $\langle A, (f_i)_{i \in I} \mathcal{F} \rangle$, where $\langle A, (f_i)_{i \in I} \rangle$ is a τ -algebra and \mathcal{F} is a Hausdorff topology on A such that each f_i is a continuous map of the product space $(A^{mi}, \mathcal{F}^{mi})$ into (A, \mathcal{F}) .

THEOREM 3.1. Let (VI, \mathcal{F}) be a topological τ -algebra and let C be a component of O then C is VI-ideal.

PROOF. For any $p(x) \in \mathcal{U}[x]$ if $p(a) \in C$ for some $a \in C$, then $p(b) \in C$ for all $b \in C$. Suppose $p(b) \notin C$ for some $b \in C$. Since each operation is continuous p(x): $\mathcal{U} \longrightarrow \mathcal{U}$ is a continuous map. Then p(C) is connected. Since $p(a) \in p(C) \cap C$, $C \cup p(C)$ is connected and $O \in C \cup p(C)$ and $p(b) \notin C$ but $p(b) \in C \cup p(C)$. Thus C is a proper subset of $C \cup p(C)$. It is a contradiction to the fact that C is a component of O.

THEOREM 3.2. Let (VI, \mathcal{F}) be a topological τ -algebra and let N be an VI-ideal. Let $\phi = \{\phi_a(x) \in VI[x] \mid a \in A\}$ be a left invertibly translation of VI. Then N is open in VI if and only if θ_N is open in $VI \times VI$.

PROOF. For any $(a, b) \in \theta_N$ and $\phi_a(x) \in \phi$ since $\phi_a(b) \in N$, $\phi_a(a) = 0 \in N$ and $\phi_a(x) : \mathcal{U} \longrightarrow \mathcal{U}$ is continuous there exists neighborhood U and V of a and b, respectively, such that $\phi_a(U) \subset N$ and $\phi_a(V) \subset N$. Then $U \times V$ is a neighborhood of (a, b) such that $U \times V \subset \theta_N$. Because for any $(c, d) \in U \times V$ let $p(x) \in \mathcal{U}[x]$ and $p(c) \in N$. Then there exists $q(x) \in \mathcal{U}[x]$ such that $p(x) = q(\phi_a(x))$. Since $q(c) = q(\phi_a(a)) \in N$ and $q(c) \in N$. Hence $q(c) \in N$ are conversely, if $q(c) \in N$ is open in $q(c) \in N$ and $q(c) \in N$ are since $q(c) \in N$ and $q(c) \in N$ are

THEOREM 3.3. Let (VI, \mathcal{F}) be a topological τ -algebra and let $\phi = \{\phi_a(x) \in VI[x] | a \in A\}$ be a left invertible translation. Then every open VI-ideal is closed in VI.

PROOF. Let N be an open \mathcal{U} -ideal. Then by Theorem 3.2 θ_N is open in $\mathcal{U} \times \mathcal{U}$. Thus for each $a \in A$ $[a]_{\theta_N}$ is open. Then $N = A - \bigcup_{a \notin N} [a]_{\theta_N}$. Since $\bigcup_{a \notin N} [a]_{\theta_N}$ is open, N is closed in \mathcal{U} .

THEOREM 3.4. Let (VI, \mathcal{F}) be a topological τ -algebra and let N be an VI-ideal. Let $\phi = \{\phi_a(x) \in \mathcal{V} \mid [x] \mid a \in A\}$ be a left invertible translation. Then $\mathcal{V} \mid A$ is discrete if and only if N is open in $\mathcal{V} \mid A$.

THEOREM 3.5. Let (VI, \mathcal{F}) be a topological τ -algebra and let C be a component of O. Let ϕ be a left invertible translation. Then O has a component consisted O only in VI/C.

PROOF. Let \dot{U} be a component of \dot{O} in \mathcal{U}/\mathbb{C} and let $\varphi: \mathcal{U} \longrightarrow \mathcal{U}/\mathbb{C}$ be a canonical map. Suppose there exists $\dot{x} \in \dot{U}$ such that $\dot{x} \neq \dot{O}$. Then $\varphi^{-1}(\dot{U})$ is a subset of \mathscr{U} and $C \subset \varphi^{-1}(\dot{U})$, since for any $c \in C$ $\varphi(c) \in \varphi(C) \subset \dot{U}$. Moreover, C is a proper subset of $\varphi^{-1}(\dot{U})$, since $x \notin C$ but $x \in \varphi^{-1}(\dot{U})$. Since C is a component of C $\varphi^{-1}(\dot{U})$ is not connected. Then there exist open subsets C, C in C is a component of C $\varphi^{-1}(\dot{U}) = (P \cap \varphi^{-1}(\dot{U})) \cup (Q \cap \varphi^{-1}(\dot{U}))$, where $(P \cap \varphi^{-1}(\dot{U})) \cap (Q \cap \varphi^{-1}(\dot{U})) = \varphi$ and neither set is empty. Then it is verified that $\dot{U} = (\varphi(P) \cap \dot{U}) \cup (\varphi(Q) \cap \dot{U})$. For any $a \in U$ since $\varphi^{-1}(\dot{U}) = \bigcup_{a \in U} [a]_{\theta_c} [a]_{\theta_c} \cup \bigcup_{a \in U} [a]_{\theta_c}$. Then by $(1) [a]_{\theta_c} = (P \cap [a]_{\theta_c}) \cup (Q \cap [a]_{\theta_c})$. Since \mathcal{U} has a left invertible translation $\mathcal{V}_a([O]_{\theta_c}) = \mathcal{V}_a(C) = [a]_{\theta_c}$, since $b \in [a]_{\theta_c} \hookrightarrow (b, a) \in \theta_c \Leftrightarrow \phi_a(b) \in C \Leftrightarrow \mathcal{V}_a(\phi_a(b)) = b \in \mathcal{V}_a(C)$. Since $\mathcal{V}_a(x)$ is continuous $[a]_{\theta_c}$ is connected. Then $[a]_{\theta_c} \subset (P \cap [a]_{\theta_c})$ or $[a]_{\theta_c} \subset (Q \cap [a]_{\theta_c})$.

Thus $\varphi(P \cap \varphi^{-1}(\dot{U})) \cap \varphi(Q \cap \varphi^{-1}(\dot{U})) = \phi$. For, suppose there exists $\dot{a} \in \varphi(P \cap \varphi^{-1}(\dot{U})) \cap \varphi(Q \cap \varphi^{-1}(\dot{U}))$. Then $\varphi^{-1}(\dot{a}) \subset P$, $\varphi^{-1}(\dot{a}) \subset Q$ and $\varphi^{-1}(\dot{a}) = [u] \theta c$. Thus $[u] \theta c \subset P \cap \varphi^{-1}(\dot{U})$ and $[u] \theta c \subset Q \cap \varphi^{-1}(\dot{U})$. It is a contradiction. Then $(\varphi(P) \cap \varphi(U) = \dot{U}) \cap (\varphi(Q) \cap \dot{U}) = \phi$ and since φ is an open map, each is open in \dot{U} . It is contradictory to the fact that \dot{U} is connected.

THEOREM 3.6. Let (VI, \mathcal{F}) be a topological τ -algebra with a left invertible translation ϕ . Then an VI-ideal N is closed in VI if and only if $[a]_{\theta_N}$ is closed in VI, for each $a \in A$.

PROOF. For any $b \in [a]_{\theta_N}^C$ since $(b, a) \notin \theta_N$ by Proposition 2.5, $\phi_a(b) \notin N$. Since N^C is open in \mathcal{U} and $\phi_a(x)$ is continuous there exists an open set U in \mathcal{U} such that $b \in U$ and $\phi_a(U) \subset N^C$. Moreover, $U \subset [a]_{\theta_N}^C$, since for any $u \in U \phi_a(u) \in N^C$ $\phi_a(a) = O \in N$.

THEOREM 3.7. Let (VI, \mathcal{F}) be a compact τ -algebra with a left invertible translation ϕ . If N be an open VI-ideal then φ : VI- \longrightarrow VI/N is a closed map.

PROOF. Let H be closed in $\mathcal{V}l$ and let $\dot{a} \in \mathcal{V}l/N - \varphi(H)$, where $\dot{a} = [a]_{\theta_N}$ and $a \notin \bigcup_{h \in H} [h]_{\theta_N}$. Since N is open by Theorem 3.2 θ_N is open in $\mathcal{V}l \times \mathcal{V}l$. Then $\{[h]_{\theta_N}|_{h \in H}\}$ is an open covering of H. Since H is compact, there exist $[h1]_{\theta_N}, \ldots, [hn]_{\theta_N}$ such that $\bigcup_{i=1}^n [hi]_{\theta_N} \supset H$. Since N is open and $\mathcal{V}l$ has a left invertible translation ϕ by Theorem 3.3 and 3.6 $[hi]_{\theta_N}$ is closed in $\mathcal{V}l$. Then $\bigcup_{i=1}^n [hi]_{\theta_N}$ is closed. Thus there exists an open set U in \mathcal{U} such that $a \in U \subset \mathcal{V}l - \bigcup_{i=1}^n [hi]_{\theta_N}$. Since φ is an open map $\varphi(U)$ is a neighborhood of \dot{a} . And $\varphi(U) \subset \mathcal{V}l/N - \varphi(\bigcup_{i=1}^n [hi]_{\theta_N}) \subset \mathcal{V}l/N - \varphi(H)$.

Keimyung University
Taegu, Korea
and Taegu University
Taegu, Korea

REFERENCES

- N. Bourbaki, General topology, Part 1, Hermann, Paris, Addison-Wesley Reading Mass, 1966, MR 34 \$5044a.
- [2] Taqdir Husain, Introduction to topological groups, W.B. Saunders Company, 1966.
- [3] S. Mac Lane, Homology, die Grundlehren der Math., Wissenschaften, Band 114, Academic Press, New York; Spring Verlag, Berlin, 1963, MR 28#122.
- [4] B. Mitchell, Theory of categories, Pure and Appl. Math., Vol.17, Academic Press, New York, 1965, MR 34#2647.
- [5] A.I. Mal'cev, On the general theory of algebraic systems, Amer. Math. Soc, 27(2), 125-142.
- [6] Tae Ho Choe, Congruence weak regularity and unary algebraic polynomials, To appear.
- [7] ______, Zero-dimensional compact associative distributive universal algebra 1, Proc. Amer. Math. Soc, 42(1974), 607-613.
- [8] G. Grätzer, Universal algebra, Van Nostrand, Princeton, N.J., 1968, MR 40#1320.