A NOTE ON ひ-IDEALS

By Young Soo Jo and Sang Ki Lee

1. Introduction

In [6], v-ideals and translations of an universal algebra $U l$ are introduced by Tae Ho Choe. He used unary algebraic polynomials of $थ \pi$ to construct v-ideal. In this paper, we obtain a necessary and sufficient condition between v-ideal N and congruence relation θ_{N} induced by N. Finally we find some
 here mainly follow [8] for universal algebras, [4] for category and [2] for topology. Throughout this paper, all universal algebras will be of finite type, i. e., by a τ-algebra we mean a pair $\left\langle A, F=\left(f_{i}\right)_{i \in l}\right\rangle$, where A is a set, F a family of operations: maps f_{i} of $A^{m i}$ into A, where $m i$ is the arity of the f_{i}, that is nonnegative integer and I is a finite ordered set $\{1,2, \ldots, t\}$. Then we say that it is of arity type $\tau=(m 1, m 2, \ldots m t)$. Throughout this paper, we assume that F has a distinguished nullary operation o, which we call the zero of \because.

Denote $\cup[x]$ to be the set of all unary algebraic polynomials over v.

2. \because-ideals

LEMMA 2.1. Let \mathcal{U} and \mathscr{L} be τ-algebras and h a homomorphism of $U t$ into \mathscr{L}. Then for any unary algebraic polynomial $p(x) \in \pi \pi[x]$ there exists $q(x) \in \mathscr{L}[x]$ such that $h p(x)=q(x) h$, i.e., $h(p(a))=q(h(a))$ for all $a \in A$.

LEMMA 2.2. Let \mathcal{U} and \mathscr{L} be τ-algebras and h a homomorphism of \mathcal{U} onto \mathscr{L}. Then for any $q(x) \in \mathscr{L}[x]$ there exists $p(x) \in U[x]$ such that $h p(x)=q(x) h$.

THEOREM 2.1. Let $\because \lambda$ and \mathscr{L} be τ-algebras and h a homomorphism of U into \mathscr{L}. Let M be a \mathscr{L}-ideal. Then $h^{-1}(M)$ is also vt-ideal.

PROOF. For any $p(x) \in U[x]$ if $p(a) \in h^{-1}(M)$ for some $a \in h^{-1}(M)$. By Lemma 2.1, there exists $q(x) \in \mathscr{L}[x]$ such that $h p(x)=q(x) h$. Then $h(p(a))=q(h(a)) \in M$. If $b \in h^{-1}(M)$ then $h(p(b))=q(h(b)) \in M$.

THEOREM. 2.2. Let U and \mathscr{L} be τ-algebras and h a homomorphism of U onto \mathscr{L}. Let N be an v-ideal. If Ker $h \subset \theta_{N}$ then $h(N)$ is a \mathscr{L}-ideal.

PROOF. For any $q(x) \in \mathscr{L}[x]$ if $q(b) \in h(N)$ for some $b \in h(N)$ then there exists $a \in N$ such that $h(a)=b$. Then by Lemma 2.2 there exists $p(x) \in \mathcal{U}[x]$ such that $h p(x)=q(x) h$, thus $h(p(a))=q(b) \in h(N)$. Then $(p(a), n) \in K e r h$ for some $n \in N$. Since Ker $h \subset \theta_{N}, p(a) \in N$. Then for any $d \in h(N) q(d)=q(h(e))=h(p(e)) \in h(N)$, where $e \in N$ and $h(e)=d$.

THEOREM 2.3. The intersection of any V-ideals of τ-algebra is an V-ideal.
Therefore $\left\{N_{i} \mid i \in I\right\}$ forms a complete lattice, its greatest element is $2 l$ and least element is $\bigcap_{i \in I} N_{i^{*}}$. Denote v_{0} to be the set of all $v_{\text {-ideals (about } 0 \text {). }}^{\text {. }}$

DEFINITION 2.2. [6] Let U be a τ-algebra and let $\phi=\left\{\phi_{a}(x) \in U[x] \mid a \in A\right\}$ be a set of nonidentically zero unary algebraic polynomials such that $\phi_{a}(x)=0$ has the unique solution a in v. Such a ϕ is called a translation (about 0) of $v_{\text {. }}$

DEFINITION 2.3. [6] Let $v \pi$ be a τ-algebra and let ϕ be a translation of $v . \phi$ is said to be left invertible if $\phi_{a}(x) \in \phi$ has a left inverse $\Psi_{a}(x) \in \mathcal{U}[x]$ (in the sense that $\left.\Psi_{a}\left(\phi_{a}(x)\right)=x\right)$ and $\phi_{0}(x)=x$.

3. Topoleg.cal τ-algebras

DEFINITION 3.1. [7] A topological τ-algebra is an object $\left\langle A,\left(f_{i}\right)_{i \in I} \mathscr{T}\right\rangle$, where $\left\langle A,\left(f_{i}\right)_{i \in I}\right\rangle$ is a τ-algebra and \mathscr{F} is a Hausdorff topology on A such that each f_{i} is a continuous map of the product space $\left(A^{m i}, \mathscr{J}^{m i}\right)$ into (A, \mathscr{T}).

THEOREM 3.1. Let (u, \mathscr{T}) be a topological τ-algebra and let C be a component of O then C is U-ideal.

PROOF. For any $p(x) \in \mathscr{M}[x]$ if $p(a) \in C$ for some $a \in C$, then $p(b) \in C$ for all $b \in C$. Suppose $p(b) \notin C$ for some $b \in C$. Since each operation is continuous $p(x)$: $\eta \longrightarrow U$ is a continuous map. Then $p(C)$ is connected. Since $p(a) \in p(C) \cap C$, $C \cup p(C)$ is connected and $O \subseteq C \cup p(C)$ and $p(b) \notin C$ but $p(b) \in C \cup p(C)$. Thus C is a proper subset of $C \cup p(C)$. It is a contradiction to the fact that C is a component of O.

THEOREM 3.2. Let (v, \mathscr{T}) be a topological τ-algebra and let N be an U-ideal. Let $\phi=\left\{\phi_{a}(x) \in U[x] \mid a \in A\right\}$ be a left invertibly translation of U_{0}. Then N is open in $U 1$ if and only if θ_{N} is open in $u \times u$.

PROOF. For any $(a, b) \in \theta_{N}$ and $\phi_{a}(x) \in \phi$ since $\phi_{a}(b) \in N, \phi_{a}(a)=0 \in N$ and $\phi_{a}(x): U \longrightarrow U$ is continuous there exists neighborhood U and V of a and b, respectively, such that $\phi_{a}(U) \subset N$ and $\phi_{a}(V) \subset N$. Then $U \times V$ is a neighborhood of (a, b) such that $U \times V \subset \theta_{N}$. Because for any $(c, d) \in U \times V$ let $p(x) \in V[x]$ and $p(c) \in N$. Then there exists $q(x) \in U\left[[x]\right.$ such that $p(x)=q\left(\phi_{a}(x)\right)$. Since $;(c)=$ $q\left(\phi_{a}(a)\right) \in N \quad p(d)=q\left(\phi_{a}(d)\right) \in N$. Hence $(c, d) \in \theta_{N}$. Conversely, if θ_{N} is open in U then ${ }^{[a]_{\theta_{N}}}$ is open in U for each $a \in U$. Since $N=[n] \theta_{N}$ for some $n \in N, N$ is open in $U \tau$.

THEOREM 3.3. Let (v, \mathscr{T}) be a topological τ-algebra and let $\phi=\left\{\phi_{a}(x) \in\right.$ $v[x] \mid a \in A\}$ be a left invertible translation. Then every open V-ideal is closed in v.

PROOF. Let N be an open v-ideal. Then by Theorem $3.2 \theta_{N}$ is open in $v \times v$. Thus for each $a \in A[a]_{\theta_{N}}$ is open. Then $N=A-\bigcup_{a \notin N}^{[a]_{\theta_{N}}}$. Since $\underset{a \notin N}{[a]_{\theta_{N}}}$ is open, N is closed in v.

THEOREM 3.4. Let (v, \mathscr{G}) be a topological τ-algebra and let N be an $v t$-ideal. Let $\phi=\left\{\phi_{a}(x) \in V \pi[x] \mid a \in A\right\}$ be a left invertible translation. Then $U / / N$ is discrete if and only if N is open in v.

THEOREM 3.5. Let (v, \mathscr{F}) be a topological τ-algebra and let C be a component of O. Let ϕ be a left invertible translation. Then \dot{O} has a component consisted \dot{O} only in U/C.

PROOF. Let \dot{U} be a component of \dot{O} in $v \pi / \mathrm{C}$ and let $\varphi: V \tau \longrightarrow \tau / C$ be a canonical map. Suppose there exists $\dot{x} \in \dot{U}$ such that $\dot{x} \neq \dot{O}$. Then $\varphi^{-1}(\dot{U})$ is a subset of \mathscr{U} and $C \subset \varphi^{-1}(\dot{U})$, since for any $c \in C \quad \varphi(c) \in \varphi(C) \subset \dot{U}$. Moreover, C is a proper subset of $\varphi^{-1}(\dot{U})$, since $x \notin C$ but $x \in \varphi^{-1}(\dot{U})$. Since C is a component of O $\varphi^{-1}(\dot{U})$ is not connected. Then there exist open subsets P, Q in U such that
(1) $\varphi^{-1}(\dot{U})=\left(P \cap \varphi^{-1}(\dot{U})\right) \cup\left(Q \cap \varphi^{-1}(\dot{U})\right)$, where $\left(P \cap \varphi^{-1}(\dot{U})\right) \cap\left(Q \cap \varphi^{-1}(\dot{U})\right)=$ ϕ and neither set is empty. Then it is verified that $\dot{U}=(\varphi(P) \cap \dot{U}) \cup(\varphi(Q) \cap \dot{U})$. For any $a \in U$ since $\varphi^{-1}(\dot{U})=\bigcup_{a \in U}[a]_{\theta_{c}}[a]_{\theta_{c}} \subset \bigcup_{a \in U}[a]_{\theta_{c}}$. Then by (1) $[a]_{\theta_{c}}=(P \cap$ $\left.[a]_{\theta_{c}}\right) \cup\left(Q \cap[a]_{\theta_{c}}\right)$. Since $थ \pi$ has a left invertible translation $\Psi_{a}\left([O]_{\theta_{c}}\right)=\Psi_{a}(C)$ $=[a]_{\theta_{c}}$, since $b \in[a]_{\theta_{c}} \Leftrightarrow(b, a) \in \theta_{c} \Leftrightarrow \phi_{a}(b) \in C \Leftrightarrow \Psi_{a}\left(\phi_{a}(b)\right)=b \in \Psi_{a}(C)$. Since $\Psi_{a}(x)$ is continuous $[a]_{\theta_{c}}$ is connected. Then ${ }^{[a]_{\theta_{c}}} \subset\left(P \cap[a]_{\theta_{c}}\right)$ or ${ }^{[a]}{ }_{\theta_{c}} \subset\left(Q \cap[a]_{\theta_{c}}\right)$.

Thus $\varphi\left(P \cap \varphi^{-1}\left(\dot{U}^{\prime}\right)\right) \cap \varphi\left(Q \cap \varphi^{-1}(\dot{U})\right)=\phi . \quad$ For, suppose there exisìs $\dot{a} \in$ $\varphi\left(P \cap \varphi^{-1}(\dot{U})\right) \cap \varphi\left(Q \cap \varphi^{-1}(\dot{U})\right)$. Then $\varphi^{-1}(\dot{a}) \subset P, \varphi^{-1}(\dot{a}) \subset Q$ and $\varphi^{-1}(\dot{a})=[u] \theta$ c. Thus $[u] \theta_{c} \subset P \cap \varphi^{-1}(\dot{U})$ and $[u] \theta_{c} \subset Q \cap \varphi^{-1}(\dot{U})$. It is a contradiction. Then $(\rho(P) \cap \varphi(U)=\dot{U}) \cap(\varphi(Q) \cap \dot{U})=\phi$ and since φ is an open map, each is open in \dot{U}. It is contradictory to the fact that \dot{U} is connected.

THEOREM 3.6. Let ($u t, \mathcal{F})$ be a topological τ-algctra with a left invertible translation ϕ. Then an Ui-iaeal N is closed in U if and only if $[a]_{\theta_{N}}$ is closed in u, for each $a \in A$.

PROOF. For any $b \in[a]_{\theta_{N}}^{C}$ since $(b, a) \notin \theta_{N}$ by Proposition $2.5, \phi_{a}(b) \notin N$. Since N^{C} is open in U and $\phi_{a}(x)$ is continuous there exists an open set U in U such that $b \in U$ and $\phi_{a}(U) \subset N^{C}$. Moreover, $U \subset[a]_{\theta_{N}}^{C}$, since for any $u \in U \phi_{a}(u) \in N C$ $\phi_{a}(a)=O \in N$.

THEOREM 3.7. Let ($v t, \mathcal{G}$) be a compact τ-algebra with a left invertible translation ϕ. If N be an open UT-ideal then $\varphi: U \tau \longrightarrow U \pi / N$ is a closed map.

PROOF. Let H be closed in U and let $\dot{a} \in U / N-\varphi(H)$, where $\dot{a}=[a]_{\theta_{N}}$ and $a \notin \bigcup_{h \in H}[h]_{\theta_{N}}$. Since N is open by Theorem $3.2 \theta_{N}$ is open in $v \tau \times v \pi$. Then $\left\{[h]_{\theta_{\Lambda}} \mid\right.$ $h \in H\}$ is an open covering of H. Since H is compact, there exist $[h 1]_{\theta_{N}, \ldots,[h n]}{ }_{\theta_{N}}$ such that $\bigcup_{i=1}^{n}[h i]_{\theta_{N}} \supset H$. Since N is open and U has a left invertible translation ϕ by Theorem 3.3 and $3.6[h i]_{\theta_{N}}$ is closed in $u t$. Then $\bigcup_{i=1}^{n}[h i]_{\theta_{N}}$ is closed. Thus there exists an open set U in \mathscr{U} such that $a \in U \subset U \mathbb{U}-\bigcup_{i=1}^{n}[h i]_{\theta_{N_{*}}}$. Since φ is an open $\operatorname{map} \varphi(U)$ is a neighborhood of \dot{a}. And $\varphi(U) \subset V t / N-\varphi\left(\bigcup_{i=1}^{n}[h i]_{\theta_{N}}\right) \subset v i / N-\varphi(H)$.
Keimyung University and Taegu University
Taegu, Korea

REFERENCES

[1] N. Bourbaki, General topology, Part 1, Hermann, Paris, Addison-Wesley Reading Mass, 1966, MR 34\#5044a.
[2] Taqdir Husain, Introduction to topological groups, W. B. Saunders Company, 1966.
[3] S. Mac Lane, Homology, die Grundlehren der Math., Wissenschaften, Band 114, Academic Press, New York; Spring Verlag, Berlin, 1963, MR 28 \#122.
[4] B. Mitchell, Theory of categories, Pure and Appl. Math., Vol.17, Academic Press, New York, 1965, MR $34 \# 2647$.
[5] A. I. Mal'cev, On the general theory of algebraic systems, Amer. Math. Soc, 27(2), 125-142.
[6] Tae Ho Choe, Congruence weak regularity and unary algebraic polynomials, To appear.
[7] \qquad , Zero-dimensional compact associative distributive universal algebra 1, Proc. Amer. Math. Soc, 42(1974), 607-613.
[8] G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1968, MR $40 \# 1320$.

