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ON STABILITY OF PERTURBED THIRD ORDER
LINEAR DIFFERENTIAL EQUATION

By H. EL-Owaidy and A.S. Zagrout

The equation considered here is of the form
fitai+a-au=ph (u, &, i, 1) (1)
in which « is a constant, % is a real analytic function in all its arguments and
u is a real small parameter. The dots indicate differentiation with respect to
the time £
Any equation in the form
iitautbatcu=uh (u, #t, #, @)
where @, b and ¢ are constants reduced by certain transformation to equation
Q.
The main assumption in this paper is that the unperturbed equation
i+ ati+u+au=0
has a pair of imaginary eigenvalues. This problem is quite different from that
considered by Ezeilo [2].
Let
3 =u, 2= Zg=ii

then equation (1) is reduced to the system

¢=Bz+pg (2, 1) 2
where
z 0 1 0] 0
=|2,| B=| 0 0 1| g w=|0
N |
23 -a -1 -2 | h(zp 29, 234 ©)

The transformation z=QX with det Q0
will let equation (2) takes the form
x=Ax+p f(z, u) @
where
X 0-1 0 1 0 0
, A=| 1 0 0| Q= 0-1-a

% o 0 0 -1 0 &
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and f=Q—l g.
It is easy to see that the eigenvalues of A are —a, +4, —4, i.e. A has one
real and two pure imaginary roots which are in accordance with our assumption.
Through this paper the following abbreviations will be used:
R(z, )=h(Qx, 1)
7(#) =R(b cosf, b sint, 0;0)
r,(t) =R'x,.(5‘ cosf, b sint, 0;0)

r#(i) =R’#(b cost, b sinf, 0;0)

where b is a real constant.

THEOREM 1. If a real constent b0 exist for which
2z
fr(—t)[cos t—a sin {]di=F(5)=0
0
and

GF(b) _f [cos ¢—a sin ¢] [r{(—f)cos t—r,(—t) sin t1dtz%0 then for |u|

0
sufficiently small equation (1) has a wnique nonconstant periodic solution p(f, )
of period T(u)=2+43(u) such that:

p(t, 0)=b cos ¢,

T() =27, and
o) _ _ 1

lim =¢= 5 —t in {+a cos ¢] dt
g M ble™+1) [?‘( 2 Jomy v ]

2z

The solution p(l; w) is analytic for ail ¢ and || sufficiently small.

The proof of this theorem is analogous to that of Theorems 4.1 and 4. 2 Chapter
14, [1], and therefore be omitted.

Let ¢(#; #) be the periodic solution of (3). The first variational system of
system (3) corresponding to ¢(¢, w) is
=[A" ~uf (@; w): Wy @

T .
where  y=I[y, »» ¥l . A,=g.

THEOREM 2. Under the hypotheses of Theoremn 1, if |p| s sufficiently small,
u#0 and
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2z

° f [ry @) +ar,()]1dt>0 (5)
()

then the characteristic mullipliers of (4) satisfying the following condilions
(=1, [4,W|<1and |2;()] <1,
thus the periodic solution p(t, 1) of (1) is orbitally asympiotically stable.
PROOF. By Liouville’s formula we have
T(w)
21.22-23=exp{—aT—-ﬁ-{[rl+ar2-—r3] dt}

Since ¢(t, p) is a periodic solution of (4), then one of the characteristic
multipliers of system (4) is in modulus equal to 1, say 4;, i.e. [4,(w]|=1.
Thus

T(w
(). 23(#)=exp[—a?‘—ﬁ [ try+ar,-ry) a't]
0

where 4;() is the characteristic multiplier of (4) for which 2,(0) =¢" 2™ Thus
the condition ]is(y)|=e—h<l holds if |g| is sufficiently small.

The relation between the characteristic multiplier and the corresponding
characteristic exponent is given by

A=t )

It is obviously 4,(u), 7;, ¢ and T are analytic functions of g for |g| sufficiently
small. Hence:

2n
L

Trd f [ry+ary,—rildt—p2rz0’,(0) -i-O(u)} ()
] 0 &

12,() | =exp|

where ¢",(0)= {d,oz/d,u]pz-o. On the other hand from (7) we have
0(0) =5~ (X' (O™ +ac). ©)

Using Loud Theorem 1, [4], or Farkas method [3] one can determine A5 (0) as
follows

2
- 1 —2na
P A=~ ggd et ie g
2 T { m, () dt. (10

Substitution (10) into (9) the condition |2,(w)| <1 is satisfied. This completes
the proof of the theorem.
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REMARKS. (1) If
2z
e [lry®+aryNat<o
0

The conditions of the Theorem 2 do not hold and thus the periodic solution
pC, w) of (1) is unstable.
(2 If
2z
[r @ +ary®1dt=0
0

the stability condition depends on the coefficient of the second approximation
of [42 in (8).

(3) The above method can be extended to the real perturbed linear eguation
of order n which takes the following form

u(n) (n—2) ,

+a1u("—1)+a2u teea Gita u=phCu, o, #..., 60,

)
where the characteristic equation

n n—1 _
raar T 17 T2,=0

of the corresponding unperturbed equation has two pure imaginary roots and
all the other roots are simple and have negative real parts.
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