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ON LINEAR SYSTEMS
By H. El-Owaidy and A.A. Zagrout

1. Consider the linear homogeneous system

=Ax, ' :—5’;— €9

where x is #- dimensional vector, A(#) is XxXn matrix of complex continuous
function such that A¢+w)=A(), —oo<t<eo for some constant w>0.

The fundamental result for such systems concerns the full representation of
the fundamental matrix solution @{#) of system (1) as:

(i) OU+uw)=0(t)C

where C is nX# nonsingular constant matrix and @(0)=U, the unit matrix.

(i) SO=pDe"

where p({+w)=p(t), and p(@) is a nonsingular matrix, B is nXn constant
matrix defined by eRw:C:Qﬁ(w). System (1) is known as Floquet system
(F.5.0.

The following abbreviation

[S, T]=8T-TS
B, w)=A{+w)— A

will be used throughout this paper.

Let ¥(¢, w) denote the fundamental matrix solution of the system

y'=B{, w)y @

for which (0, U)=U (the unit matrix) holds.

DEFINITION. The system (1) is said to be a generalized Floguel system, (G.F.
S.) if and only if

[B(t, w), ©]=0, —oo <t oo,

LEMMA 1. If [B(S, w), A(®)] =0, then the system (1) is ¢ G.F.S.
PROOF. Differentiating [B(S, w), @()] with respect to {, we have
[B(S, w), ®()]'=B®" —-9'B
=BAD - ADB.
Since [B(S, w), A()]=0, so
[B(S, w) @(3]"=A() [B(S, w), 2{)].
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Thus [B(S, w), @()] satisfies a linear matrix differential system with conditions
that at =0, we have [B(S, w), #(0)] =0 and consequently [B(S, w), ®()]1=0;
therefore in particular, [B(¢, w), ®()] =0 for all {. This completes the proof.

LEMMA 2. If the system (1) is a G.F.S., then:

@) @G, TE, w)] =0, provided [@(w), B({, w)] =0

(i) [R, ¥, w)]=0, provided [R, B(, w)] =0

GiD) [T, w), e X=0, provided [R, B(t, w)]=0

() [R, e ®]=0.

PROOF. (i) Differentiating [@(w), ¥ (¢, w)] with respect to #, we have

@), T, w) =¥ -T'D
=0BY - BY'®

But since [@(w), B{, w)]=0, so [@(w), T, w)]'=B[@(w), ¥, w)]l. Thus
[@(w), (¢, w)] satisfies a linear matrix differential system with conditions
that at =0 we have [@(w), ¥(0, w)]=0 and hence [®(w), ¥, w)] =0 for all
t. This completes the proof of part (i). For parts (ii) and (iii), we follow the
same technique. The proof of past (iv) follows from the definition.

THEOREM 1. Lef the system (1) be a G.F.S. and @, U be the fundamental
malrix solutions for the system (1) & (2) respectively, then

D T, w)=0""OP¢+uw)d (w) @
Gi) @t +nw) =B(t) [qﬁ(w)]""f[;zzr(urm, w) )
(iii) P(!-i—mo):P(t)"Ii;W(t—l—rw. w) &)

provided [R, B(t, w)]=0.

PROOF. Relation (3) can be written as
U, w)=2Z0, w)d (w),
where  Z({, w)=0 “(O)B{+w) (6)
Differentiating Z(¢, w) with respect to #, we obtain
Z'0¢, w)=(@ YO +uw)+0 (O ¢ +w)
=0 O [- AW+ AG+w)] O +w)
since (@ D=-0"Y()A(?). Thus we have
Z't, w)=0"‘@OB(t, w)(t+w).
Using (6), we obtain
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Z'(, w)=0"'() B¢, )OI, w)
=B(, w)Z{t, w),
since
(@), B{, w)]l=0
by assumption. Thus Z(¢, w) is a solution of system (2) such that Z(0, w)=
@(w). Relation (3) follows directly from the definition of Z(¢, ).
(ii) Rewrite relation (3) in the form

G(t+w) =0T U, w) Olw) D)
then using Lemma 2-i, equation (7) takes the forms
D +w)=C)Ew) T, w) (8

Thus relation (4) is true for #=1. Replacing ¢ by #+w in (8), we have
QU+ 2w) =0 +w)B(w)¥ (t+w, w).
Using (8) and Lemma 2-i, we obtain
G(t+20)=0@) [0@)]* ¥(t, w) W(t+w, w)
=0(1) [@(w)]ziyg (t+rw, w).
Thus relation (4) is true for #=2, Now the relation (4) is true for u=1,2.

Next, we employ the principle of induction. Let relation (4) be true for #=K,

i.e. we have

k_
D+ Kw)=90(t) {Cﬁ(w)]fe H;?F(t-'r-?’w, w)

Replacing ¢ by {+w, we have

O+ (K + D) =0(t+w) 10" fl:—[i(tf(?'Tl)w, w)
Using (7) and Lemma 2-i, we obtain ‘

O(t+ (K +Dw) =00 [0(w)) w)}:lj:rp~(t+(r+1)w, )

K+1

K
=@(1) [@(w))] 1;[0 W(t+rw, w)

Hence relation (4) is true for K+1. Thus it is true for all values of n#. This
completes the proof of (ii).
To prove (5) we note that P(z‘):@(z‘)e—m, therefore by replacing ¢ by 4w,
we obtain
p(t+w)=®(t+w)e'RU+w)
By using (3), we get
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p+w)=8EOW(t, w) @(w)e_me ~k»

=0T, we
since @(w):eﬂw. Using Lemma 2-iii, we obtain
p+w) =0 T, w)
=pOTE, w)
Thus relation (5) is true for #=1. Replacing to by ¢+w, we get
plt+2w)=pCG+w) (t+w, w)
=pO¥{E, w) {+w, w)

1
=p() TI (t+rw, w)
r=0
Thus relation (5) is true for #=2. Using the technique of induction as for

relation (4), we can see that the relation (86) is true for all #. This completes
the proof of the theorem.

We shall consider the case in which B({,w)=B,, where B, is a constant. It
is clear that the system (1) is a G.F.S if [B;, A($)]=0 (by Lemma 1). The

fundamental matrix solution ¥({¢, w) of system (2) takes the form

T, w)=e.
The relations (3), (49 & (5) reduce to
D+ 1) =0 B (w) ©)
Bt-+nw) =0 [B(w)] "Bl T#n=1)] (10)

and
nt -kvl)—n(nflj]

pCE+nw) :g?(t)eB’[
respectively.
Expression (9) enables us to study the stability criteria and the following
result may be obtained.

(11)

THEOREM 2. If the characteristic roots of B, have negative (positive) real
parts, then the irivial solution of (1) iés asympiotically stable (unstable).

PROOF. The proof of this theorem is an immediate consequence of Theoreras
1.1 & 1.2 of Chapter 13 in Coddington & Levinson [1].

EXAMPLE. Let
A(Dz[at-i-p(l‘) b]’
c at+q(t) _
where p(#) and ¢(¢) are periodic functions with least period = and @, b and ¢
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are constants. Then
B(t, w)=A(t+w) - A(t)=awlU=B,,
where U is the unit matrix,

Since w>0 (by assumption), it is clear that if Re @ <0 then the zero solution
of system (1) is assumptotically stable and if Re ¢>>0, then the zero solution is
unstable. If ¢=0, then B,=0 & consequently A({+w)=A(f), i.e. the system
reduces to the Floquet system.
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