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ON LINEAR SYSTE~fS 

By H. EI.Owaidy and A. A. Zagrout 

1. Consider the linear homogeneous system 

χ'=A (I)x， 옮 (1) 

\vhere x is η- dimensional vector, A (t) is nXn matrix of complex continuous 

function such that A (I +ω)=A(t)， -∞ <t<∞ for some constant ω>0. 

The fundamental result for such systems concerns the full representation of 

the fundamental matrix solution φ(1) of system (1) as 

(i) φ(1 + 10)=φ (t)C 

where C 18 n Xn nonsingular constant matrix and φ(O)=u， the unit matrix. 
Rt 

(ii) φ(t) =p(t)e 

where p(t +w) = p(t), and p(t) is a nonsingular matrix, R is nXη constant 

matrix defined by eRω =C=φ(w). System (1) is known as Floquet system 
(F.S.). 

The following abbreviation 

[S , T] =ST-TS 

B (I, w)=A(t +ω)-A(t) 

will be used throughou t this paper. 

Let 1[1'(1, 10) denote the fundamental matrix solution of the system 

y ’ = B(I, ψ)y (2) 

for which ψ(0， U)=U (the unit matrix) holds. 

DEFINITION. The system (1) is said to be a generalized Floquel system , (G. F. 

S.) if and only if 

[B (t , 10) , φ] =0, ∞ <t <∞. 

LEMMA 1. If [B(S , α) ， A (t)] =0, then the system (1) is a G. F. S. 

PROOF. Differentiating [B(S , w) , φ (t) ] with respect to t , we 11''' ‘ 

[B(S , 10) , φ(1)]’ =Bφ/ φ'B 

=BAφ -AφB. 

Since [B(S. w). A (t) ] =0, so 

[B(S , 10) (/i(t) ]'=A(t) [B(S , w). φ(t)] 
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Thus [B (S, 10) , φ(/)] satisfies a Iinear matrix di fferent ial system with condi tions 

that at 1=0, we have [B(S, w) , φ(0) ] =0 and consequently [B(S, w) , φ(1) ] =0; 

therefore in particular, [B(/ , ω) ， φ(t)] =0 for all 1. This completes the proof. 

LEMM A 2. I[ Ihe syslem (1) is a G. F.S.. tlzen 

(i) [φ (w) ， ψ(1， ψ)] =0, þrovided [11>(ω) ， B(/ , 10)] =0 

(ii) [R, ψ(t， 10) ] =0. þrovided [R. B(I, '")] =0 

( iii) [ψ(t， zu), e-RI] = 0, prouided IR, B(t, tU)l =0 

(iv) [R, e -RI] =0. 

PROOF. (i) Differentiating [φ(10) ， ψ(/ ， w)] with respect to 1, 、，vc have 
[φ (w) ， ψ(t. ι)]'=φ1f7 ' - ψ’φ 

=φB1Jl -BW‘φ 

But since [1I>(w) , B(I, ψ)] =0, so [ψ(10) ， ψ(1 ， w)]' =B [φ(ω). ψ(/， 10)]. Thus 

[φ(w) ， ψ(1， w) ] satisfies a linear matrix differential system with conditions 

that at 1=0 we have [φ (10) ， ψ(0， 10)] =0 and hence [φ(w) ， ψ(1， 10)] =0 for all 

1. This completes the proof of part (i). For parts (i i) and (i ii), we follow the 

same technique. The proof of past (iv) follows from t he definition. 

THEORE\'I 1. Let Ihe s)'sle… (1 ) be a G.F.S. a/ld φ， ψ be IIle [,mdamenlal 

matηX sollllio1ls [or Ilze syslem (1) & (2) respectively, I/le1l 

(i) ψ(t . w)=φ 1(0φ(1 +ω)φ- 1 (W) 
.-1 

(i i) φ(t 수 1110) =φ(1) [φ(w)] " II 1Jl(l+ rw’ 10) 
r=O 

.-1 
(iii) P (l+ mo)=P (I ) II ψ(I+rw， 10) ,=0 

þrovided [R, B (I, 10)] =0. 

PROOF. Relat ion (3) can be written as 

ψ(1， 1O) = Z (I, ω)φ-l(fU)， 

where Z ( /. w)=φ 1(1)φ(1 +10) 
Differentiating Z(I , ω) with respect to 1, we obtain 

Z'(I, w)=(φ 1)'φ(I+ w) +φ 1(1)φ’(I+w) 
=φ 1(1)[ -A(I)+A(I +w)] φ(1+ .. ) 

since (φ-1)= -@ l(t)A(t) . Thus we have 

Z'(I, 10) =φ-1(I)B(I， 10)φ(1 +ω). 
Using (6), we obtain 

(3) 

(4) 

(5) 

(6) 
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Z'(t , 10)=φ '(1) B (t, ω)φ(I)Z(t， ω) 
=B(I, w)Z(t, 10) , 

smce 

[φ(1)， B(t, 10)] =0 

281 

by assumption. Thus Z (I, ω) is a solution of system (2) such that Z(O, 10) = 

φ(w). Relation (3) follows directly from the definition of Z (I, ，ν). 

(ii) Rewrite relation (3) in the form 

φ(1+10) =φ (1)ψ(1， 10) φ(10) 

then using Lemma 2• i, equation (7) takes the forms 

φ(1 +α)=φ(1) <Þ (w) ψ(1， ω) 

Thus relation (4) is true for 11=1. Replacing 1 by 1+10 in (8), we have 

φ(1 +210)=φ(I + w)φ(α)ψ(t + w， 10). 

Using (8) and Lemma 2• i, we obtain 

φ(1十 210)=φ(1) [φ(1U)]2 ￠(t， ω) ψ(t+w， ，ν〕

=φ(1) [φ(”)l2 II (t+r”’ 10) 
r=O 

(7) 

(8) 

Thus relation (4) is true for ,,= 2. Now the relation (4) is true for ,, = 1, 2. 

Next, we employ the principle of induction. Let relation (4) be true for n二K，

Î.e. we have 
• k-l 

φ (I +Kw)=φ(1) [φ(ω)J ‘ rr 1ff(t + rw , 10) 
r= O 

Replacing t by t 十tι we have 
k-I 

φ (I +(K+ l)ω)=φ(I +w) [φ(10)] ‘ rr (t+(r十 l)w. 10) 
r=O 

Using (7) and Lemma 2-i, we obtain 
v ‘ K - 1 

φ(t+(K +1 )w) =φ(1) [φ(ω)] “nψ(1， w) rr 1ff(l+(r + I) IO , 10) 
r=O 

K+l K 
= φ(1) [φ(w)]" T' rr 1ff(t + rw , 10) 

r=O 

Hence relation (4) is true for K + 1. Thus it is true for all values of 1Z. This 

completes the proof of (i i). 
Rt 

To prove (5) we note that P(I) =φ(I)e-"' ， therefore by replacing 1 by 1+10, 

we obtain 
(t +w) p(t+w) =φ(1 +ω)e 

By using (3), we get 



282 H. E f. Owaidy a-n d A. A. Zagrout 

p(l+w) =φ(1)ψ(1， w) φ(w)e -Rte -Rw 

二φ(1)ψ(1， ω)e -Rt 

Slllce φ(tU) = eRtU. USIng Lemma 2 lll, we obtaln 

P(l +w)=φ(I)e -Rtψ(1 ， w) 

=P(I)ψ(1， w) 

Thus relation (5) is true for η = 1. Replacing to by I+ w, we get 

p (l+2ω)=p (l十μ1) (I + w, w) 

=p(l)ψ(1， α) (1+10 , 10) 

=P(t) U。(t+7ω ， w) 

Thus relation (5) is true lor ,, =2. Using the technique of induction as fOl 

relation (4) , we can see that the relation (fi) is true for all n. This completes 

the proof 01 the theorem. 

We shall consider the case in which B(I, w)=B" where B, is a constant. It 

is clear that the system (1) is a G. F. S il [B" A (I)] = 0 (by Lemma 1). The 

fundamental matrix solution ψ(1， α) of system (2) takes the form 

1[f(l, w) =eB•t. 

The relations (3), (4) & (5) reduce to 

φ(1+α)=φ(t)eB• tφ(ω) (9) 

1 「，tt+÷“ ')1 φ(1+"ω)=φ(1) [φ(ω)]ne"'L"'+ T"n-'JJ ， (10) 

and 

p(l +nw) =p(I )eB,[,, + i n(κ ' ) J m ( 

respectively. 

Expression (9) enables us to study the stability criteria and the following 

result may be obtained. 

THEOREM 2. 11 Ihe chαracteristic roots 01 B 1 Ilave negatiνe (positive) real 

þarls, Ihen the triνial solution 01 (1) is asymptotically slable (αnstable). 

PROOF. The proof 01 this theorem is an immediate consequence 01 Theorer.1s 

1.1 & 1. 2 of Chapter 13 in Coddington & Levinson [11. 

EXAMPLE. Let 

A(t) = rat+ P(t) bl 
Lc at+q(t)J 

where p(l) and q(l) are periodic functions with least period 10 and a, Þ anq c 
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are constants. Then 

B(t. w)=A(l+ w)-A(I)=awU=Bj’ 
where U is the uni t matrix. 

었3 

Since ψ> 0 (by assumption). it is clear that if Re a <0 then the zero solution 

of system (1) is assumptotically stable and if Re a>O. then the zero solution is 

unstable. If a=O. then Bj =O & consequently A(t+IO)=A(t), i. e. the system 

reduces to the Floquet system. 
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