RELATIVE IDEALS IN GROUPS

By T.K. Dutta

Let S be a semigroup and T be a sub-semigroup of S. Now a nonempty subset A of S is called a *left T-ideal* if $TA \subseteq A$ [4]. The right T-ideal is defined analogously. A nonempty subset A of S is called a T-ideal if it is both left T-ideal and right T-ideal.

In [4] A.D. Wallace has shown how Faucett's theorem on cut-points of the minimal ideal of a compact connected semigroup may be relativized. Also in [5], he has studied the relativized Green's relation.

Now the object of this paper is to study the relative ideals in groups. The examples given below show that a group may contain relative ideals. With the help of this notion of relative ideals we have obtained a number of criteria for a subsemigroup T of a group S to be a subgroup and also to be a normal subgroup. Also the results obtained in this paper generalise some results on "Generalised semi ideals of semigroups" introduced by M.K. Sen [2].

EXAMPLE 1. Let M_2 be the set of all 2×2 nonsingular metrices over the field of rational numbers. Then M_2 is a group w.r.t. matrix multiplication. Let $T = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\}$, where a, b are integers and $A = \left\{ \begin{pmatrix} e & f \\ g & h \end{pmatrix} \right\}$, e, f, g, h, are even integers. Then A is a left T-ideal as well as a right T-ideal of M_2

EXAMPLE 2. Let R be the multiplicative group of the set of all nonzero rational numbers. Let $T = \{r^2/r \in R\}$. Then T is a subsemigroup of R. Let $A = \{\frac{1}{3}r^2/r \in R\}$. Then A is a T-ideal of R.

PROPOSITION 1. Let G be a group and A be a nonempty subset of G. Then there exists a subsemigroup T of G s.t. A is left (right) T-ideal of G.

PROOF. Let $T = \{t \in G/tA \subseteq A\}$. Obviously, T is nonempty since 1, the identity element of G, belongs to T. Let t_1 , $t_2 \in T$ then $t_1A \subseteq A$ and $t_2A \subseteq A$. Now $(t_1 \cdot t_2) A = t_1(t_2A) \subseteq t_1A \subseteq A$. So $t_1 \cdot t_2 \in T$. So T is a subsemigroup of G and A is a left T-ideal. Similarly we can show that A is a right T_1 -ideal of G for a subsemigroup T_1 of G.

EXAMPLE 3. Let J be the additive group of all integers and J_2 be the set of all positive even integers. Then J_2 is a subsemigroup of J. Let $A = \{a \in J \mid a \geqslant 6\}$. Then A is a J_2 -ideal but the complement of A in J is not a J_2 -ideal.

PROPOSITION 2. Let G be a semigroup. A subsemigroup T of G will be a group if complement of every T-ideal (both left and right) is also a T-ideal. Conversely, if complement of every T-ideal is a T-ideal then both T and G are groups.

PROOF. First we assume that T is a group. Let A be a left T-ideal of G and $x \in G/A$ (the complement of A in G), we shall show that $tx \in G/A$ where $t \in T$. If possible, let $tx \in A$. Then $t^{-1}(tx) \in A$ i.e $x \in A$, which is a contradiction. So $tx \in G/A$ and hence G/A is a left T-ideal. Conversely, we assume that complement of every T-ideal is a T-ideal. Let A be an ideal of the semigroup T. Then A is a T-ideal. Hence T/A will also be a T-ideal. Let $t \in T$ and $a \in A$. Then $ta \in A$. Also $ta \in T/A$ since A and T/A are ideals of T. So T does not contain any proper ideal, (both left and right). So T is a group. Similarly, we can show that G is a group.

COROLLARY 1. A semigroup S will be a group iff complement of every ideal is an ideal. Following M.K. Sen [2], a subset A of a semigroup S will be called a generalised left semiideal (g.l.s.) if $x^rA \subseteq A$, $\forall x \in S$.

COROLLARY 2. A commutative semigroup S will be a commutative group iff complement of every g.s. ideal is a g.s. ideal.

PROPOSITION 3. Let G be a semigroup with the subsemigroup T. Then T will be a group if the difference A-B of two T-ideals (both left and right) is a T-ideal (assuming that ϕ , the empty set is also a T-ideal). Conversely, if the difference of two T-ideals is T-ideal then both T and G will be groups.

Let I(S) be the set of all T-ideals (both left and right) of a semigroup S and P(S) be the set of all T-ideals A s.t. $ta \in A \Longrightarrow a \in A$ and $at \in A \Longrightarrow a \in A$.

PROPOSITION 4. A subsemigroup T of a semigroup G will be a group iff I(G)=P(G).

PROOF. Let the subsemigroup T of G be a group. Obviously, $P(G) \subseteq I(G)$. Let A be a left T-ideal of G and $ta \in A$. Then $a = t^{-1}(ta) \in A$. So $A \in P(G)$. Similarly, if A is a right T-ideal of G. Then $at \in A \Longrightarrow a \in A$. So $A \in P(G)$. So I(G) = P(G). Conversely, let I(G) = P(G). Let A be a left T-ideal of G. We shall show that G/A is also a left T-ideal. Let $a \in G/A$ and $t \in T$. Then $ta \in G/A$. For if $ta \in A$ then $a \in A$ which is a contradiction. So G/A is also a T-ideal. Now the

proposition follows from Proposition 2.

PROPOSITION 5. Let S be a semigroup with 1 and T be a subsemigroup with 1. Let $P_1(S)$ be the set of all T-ideals of S which contain 1. Then $P_1(S)$ is a semigroup with the identity element and zero.

PROOF. Let A, $B \in P_1(S)$. Then $AB \in P_1(S)$. Since AB is also a T-ideal containing 1. Also (AB)C = A(BC), where A, B, $C \in P_1(S)$. Now $TA \subseteq A$ and also $A \subseteq TA$ since $1 \in T$. Therefore TA = A. Similarly A = AT. So T is the identity element of $P_1(S)$. Similarly, we can show that AS = S = SA. So S is the zero element of $P_1(S)$.

PROPOSITION 6. Let T be a subgroup of a semigroup S. Then I(S) is a Boolean algebra w.r.t. \bigcup , \bigcap and complementation (we assume that $\phi \in I(S)$).

PROOF. Proposition follows from Proposition 2.

PROPOSITION 7. P(S) is a Boolean ring on assuming that $\phi \in P(S)$.

PROOF. Let $A, B \in P(S)$. Then $A-B \in P(S)$. For if $a \in A-B$ and $t \in T$ then $ta \in A-B$, since $ta \in B \Rightarrow a \in B$ which contradicts our assumption $a \in A-B$. So $A-B \in P(S)$. Also we can show that $A \cup B$, $A \cap B \in P(S)$. So P(S) is a Boolean ring.

PROPOSITION 8. Let T be a subgroup of a group G. Let P be the collection of all left T-ideal $\{Ta \mid a \in G\}$. Then P is a partition of G.

PROOF. Obviously, any element x of G belongs to Tx i.e., to some member of P. Also any two members of P are disjoint. On the contrary, if possible, let $Ta \cap Tb \neq \phi$. Let $x \in Ta \cap Tb$. Then there exist elements g_1 , g_2 in T s.t. $x = g_1 a = g_2 b$. So $a = g_1^{-1}(g_2 b) = (g_1^{-1} g_2)$ $b \in Tb$. Thus $Ta \subseteq Tb$.

Similarly, $Tb \subseteq Ta$. So Ta = Tb. Hence P forms a partition of G.

A semigroup S will be called a left(right) T-simple semigroup iff S is the only left (right) T-ideal of S. A semigroup which is both left. T-simple and right T-simple is called T-simple.

PROPOSITION 9. A semigroup S will be left T-simple iff for every a in S we have Ta=S.

PROOF. Let us suppose that S is left T-simple and $a \in S$. Then $ta \in Ta$, where $t \in T$. Then for any $t_1 \in T$, $t_1(ta) \in Ta$. So Ta is a left T-ideal of S. Hence Ta = S

since S is left T-simple. Conversely, let Ta=S for every a in S. Let A be a left T-ideal of S and $a \in A \subseteq S$. Then $S=Ta \subseteq A \subseteq S$. So S=A. Thus S contains no proper left T-ideal. Hence the proposition.

COROLLARY. A commutative semigroup S will be generalised simple [3] iff for every a in S we have $\overline{S}a=S$ where $\overline{S}=\{x^T|x\in S\}$.

PROPOSITION 10. A semigroup S will be a group if it is T-simple.

PROOF. Proposition follows from the fact that the existence of an ideal of S implies the existence of a T-ideal of S.

Suppose A is a T-ideal of commutative semigroup S. Let $\beta(A)$ denote the set of all those elements a of S for each of which there exists an element $t \in T$ s.t. $ta \in A$. It is clear that $A \subseteq \beta(A)$.

PROPOSITION 11. $\beta(A)$ is a T-ideal of S. If T is a group then $\beta(A) = A$. Conversely, if $\beta(A) = A$ for any T-ideal A of S then both T and S will be groups.

PROOF. Let $a \in \beta(A)$. Then $ta \in A$ for some $t \in T$. Let $t_1 \in T$. Then $t_1(ta) \in A$ i.e. $t(t_1 \ a) \in A$ so $t_1 \ a \in \beta(A)$. Hence $\beta(A)$ is a T-ideal of S. Next, let T be a subgroup of S. Obviously, $A \subseteq \beta(A)$. Let $a \in \beta(A)$. So $ta \in A$ for some $t \in T$. Then $a = t^{-1}(ta) \in A$. So $\beta(A) \subseteq A$. Hence $A = \beta(A)$. Conversely, let $\beta(A) = A$ for every T-ideal A of S. Now Ta is a T-ideal of S where $a \in T$. So $\beta(Ta) = Ta$. But from definition $\beta(Ta) = T$. So Ta = T. Hence T is a group. Similarly, we can show that S is a group.

PROPOSITION 12. A subgroup A of a group G will be left T-ideal iff it is a right T-ideal.

A semigroup S is said to have the properties α , β or γ if the relation $L_1 \cap L_2 = L_1 L_2$, $R_1 \cap R_2 = R_1 R_2$ or $L_1 \cap R_1 = L_1 R_1$ hold for left T-ideals L_1 , L_2 and right T-ideals R_1 , R_2 of S.

PROPOSITION 13. In a semigroup S having property α (β or γ) every left (right, one sided) T-ideal is a right (left, two sided) T-ideal.

PROOF. Let S be a semigroup having property α . Let L_1 be a left T-ideal of S. Now $L_1 = L_1 \cap S = L_1 S$ i.e. L_1 is also a right ideal and hence a right T-ideal of S.

PROPOSITION 14. Let S be a semigroup having property γ (α or β) and T be a subsemigroup of S. Then T is a normal subsemigroup of S.

PROOF. Let S be a semigroup having the property $\gamma(\alpha \text{ or } \beta)$ and $a \in S$. Now Ta is a left T-ideal of S and hence also a right T-ideal of S. Now $Ta = Ta \cap Ta$ = Ta = Ta. Similarly we have $aT = aT \cap aT = aT$ = Ta. Since aT is a two sided T-ideal of S, so $T(aT) \subseteq aT$. Hence $Ta \cap Ta \subseteq a$ = Ta is also a left T-ideal and hence a two sided T-ideal of S. So by property γ . $Ta \cap Ta = aTa \cap Ta$ $= Ta \cap Ta$ = Ta

COROLLARY. A subsemigroup T of a group G will be a normal subgroup if the complement of any T-ideal is a T-ideal.

PROOF. Corollary follows from Proposition 2 and 14.

PROPOSITION 15. A semigroup S having the property \gamma is regular.

PROPOSITION 16. A semigroup S having the property γ is a semilattice of groups.

Proposition 15 and 16 follows from Theorems 3 & 4 [1] since every ideal is a T-ideal.

I beg to thank Dr. M.K. Sen for his guidence in the preparation of this paper.

University of Calcutta
Department of Pure Mathematics
35, Ballygunge Circular Road,
Calcutta 700 019
India

REFERENCES

- Lajos, S., On semigroup which are semilattices of groups, Acta. Sci. Math. 30(1969), 133-135.
- [2] Sen, M.K., On generalised semiideals of semigroups, Math. Balkanika 3(1973), 453

 -457.
- [3] Sen, M.K. and Dutta, T.K., Some properties of generalised semiideals of a semigroup, Anal, Stintifice al Univ. "AL. I. CUZA" Isai XXIV, f.2. S.I. a 1978.
- [4] Wallace, A.D., Relative ideals in semigroups I, Colloq. Math. 9(1962), 55-61.
- [5] _____, Relative ideals in semigroups II, Acta. Math. Acad. Sci Hunger. 14(1963), 137-148.