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RELATIVE IDEALS IN GROUPS
By T.K. Dutta

Let S be a semigroup and 7 be a sub-semigroup of S. Now a nonempty
subset A of S is called a left T-ideal if TACA [4]. The right T-ideal is defined
analogously. A nonempty subset A of S is called a T-ideal if it is both left
T-ideal and right T-ideal.

In [4] A.D. Wallace has shown how Faucett’s theorem on cut-points of the:
minimal ideal of a compact connected semigroup may be relativized. Also in
[5], he has studied the relativized Green’s relation,

Now the object of this paper is to study the relative ideals in groups. The
examples given below show that a group may contain relative ideals. With the-
help of this notion of relative ideals we have obtained a number of criteria for
a subsemigroup T of a group S to be a subgroup and also to be a normal
subgroup. Also the results obtained in this paper generalise some results on
"Generalised semi ideals of semigroups” introduced by MLK. Sen [2].

EXAMPLE 1, Let M, be the set of all 2X2 nonsingular metrices over the field'

of rational numbers, Then M, is a group w.r.t. matrix multiplication. Let

T= {(g 2) where a, b are integers} and .4={(§ {;) e, f, g, h, are even integers]

Then A is a left T-ideal as well as a right T-ideal of M,

EXAMPLE 2. Let R be the multiplicative group of the set of all nonzero
rational numbers. Let T= {rQ/rER]. Then T is a subsemigroup of R. Let A=
{—lgﬁ-'re;e}. Then A is a T-ideal of R.

PROPOSITION 1. Let G be a group and A be a nonemply subset of G. Then there
exists a subsemigroup T of G s.t. A is left (right) T-ideal of G.

PROOF. Let T= [{EG/tATA}. Obviously, T is nonempty since 1, the identity
element of G, belongstoT. Let ¢}, £,ET then #,ACA and /,ACA. Now (¢, - 1)
A=t(t,A)=tACA. So t-t,&€T. So T is a subsemigroup of G and 4 is a left
T-ideal. Similarly we can show that A is a right T',-ideal of G for a subsemigroup
T, of G.
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EXAMPLE 3. Let J be the additive group of all integers and J, be the set of
-all positive even integers. Then ].3 is a subsemigroup of J. Let A= [aE]|a>6].
Then A is a J,-ideal but the complement of 4 in J is not a J,-ideal.

PROPOSITION 2. Let G be a semigroup. A subsemigroup T of G will be a group
if complement of every T-ideal (both left and vight) is also a T-ideal. Conversely,
if complement of every T-ideal is a T-ideal then both T and G are groups.

PROOF. First we assume that T is a group. Let A be a left T-ideal of G and
2¥EG/A (the complement of 4 in &), we shall show that #x&G/A where (ET.
If possible, let tx=A. Then t_l(tx)EA i.e ¥€A, which is a contradiction. So
{xEG/A and hence G/A is a left T-ideal. Conversely, we assume that complement
of every T-ideal is a T-ideal. Let A be an ideal of the semigroup 7. Then Ais
a T-ideal. Hence T/A will also be a T-ideal. Let t&T and e=A. Then feEA.
Also te&T/A since A and T/A are ideals of T. So T does not contain any proper
ideal, (toth left and right). So T is a group. Similarly, we can show that G
is a group.

CGROLLARY 1. A semigroup S will be a group iff complement of every ideal
is an ideal, Following M.K. Sen [2], a subset A of a semigroup S will be
called a generalised left semiideal (g.l.s.) if 2 ACA, VxES.

COROLLARY 2. A commutative semigroup S will be a commutative group iff
complement of every g.s. tdeal is a g.s. ideal.

PROPOSITION 3. Let G be a semigroup with the subsemigroup T. Then T will
be a group if the difference A-B of two T-ideals (both left and right) is a T-ideal
(essuming that ¢, the empty set is also a T-ideal). Conwversely, if the difference
of two T-ideals is T-ideal then both T and G will be groups.

Let I(S) be the set of all T-ideals (both left and right) of a semigroup S and
P(S) be the set of all T-ideals A s.t. teEA—a<EA and eicA—acA.

PROPOSITION 4. A subsemigroup T of a semigroup G will be a group iff
I(G)=P(G).

PROOF. Let the subsemigroup T of G be a group. Obviously, P{(G)CI(G). Let
A be a left T-ideal of G and ta€A. Then a=t"'(la)EA. So ASP(G). Similarly,
if A is a right T-ideal of G. Then ae/€A=—aEA. So AEP(G). So I(G)=P(G).
Conversely, let I(G)=P(G). Let A be a left T-ideal of G. We shall show that
G/A is also a left T-ideal. Let ¢&G/A and t&7. Then te=G/A. For if taSA
then €A which is a contradiction. So G/A is also a T-ideal. Now the
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proposition follows from Proposition 2.
PROPOSITION 5. Let S be a semigroup withl and T be a subsemigroup with 1.
Let P(S) be the set of all T-ideals of S which contain 1. Then P(S)is @

semigroup with the identily element and zero.

PROOF. Let A, BEP,(5). Then ABEP (S). Since AB is also a T-ideal
containing 1. Also (AB)C=A(BC), where A, B,CEP,(8). Now TACA and also
ACTA since 1=T. Therelore TA=A. Similarly A=AT. So T is the identity
element of Pi(_SJ. Similarly, we can show that AS=S5=SA., So S is the zern:
element of P,(S).

PROPOSITION 6. Let T be a subgroup of e semigroup S. Then I(S) is a Booleaw
algebra w.r.t. U, N and complemeniation (we assume that pEI(S)).

PRCOF. Proposition follows from Proposition 2.
PROPOSITION 7. P(S) is a Boolean ring on assuming that ¢=P(S).

PROOF. Let A, BEP(S). Then A—B&P(S). For if e€A-B and (€T then fa
€A -8, since leEB=aEB which contradicts our assumption e€EA—-B. So A-FB
=P(5). Also we can show that AUB, ANBEP(S). So P(S) is a Boolean ring.

PROPOSITION 8, Let T be a subgroup of a group G. Let P be the collection of
all left T-ideal (T'ala=G). Then P is ¢ partition of G.

PROOF. Obviously, any element x of G belongs to 7% i.e., to some member ol
P. Also any two members of P are disjoint. On the contrary, if possible, let
TaNTbz=¢. Let x&€TaNTh. Then there exist elements g,, g,in7 s.t. x=g o=
g.b. So a:gl_l(gz b)z(gl*l g,) bETh. Thus TeCTh.

Similarly, T8&Ta. So Ta=Th. Hence P forms a partition of G.

A semigroup S will be called a left(#ight) T-simple semigroup ift S is the
only lelt (right) T-ideal of S. A semigroup which is both left. T-simple and
right T-simple is called T-simple.

PROPOSITION 9. A semigroup S will be left T-simple iff for every a in S we

have Ta=S5.

PROOF. Let us suppose that S is left T-simple and @&S. Then ta&Ta, where
t€T. Then for any t,€T, {;({a)ETa. So Taisa left T-ideal of S. Hence Te=S
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since S is left T-simple. Conversely, let Ta=S for every ¢ in S. Let A be a
left T-ideal of S and e€ACS. Then S=TeCACS. So S=A. Thus S contains
no proper left T-ideal. Hence the proposition.

COROLLARY. A commutative semigroup S will be generalised simple [3] iff for
cvery a in S we have Sa=S where 5= |1 |xES).

PROPOSITION 10. A semigroup S will be a group if it is T-simple.

PROOF. Proposition follows from the fact that the existence of an ideal of S
implies the existence of a T-ideal of S.

Suppose A is a T-ideal of commutative semigroup S. Let S(A) denote the set

of all those elements @ of S for each of which there exists an element (€T
s.t. te=A. It is clear that ASA(A).

PROPOSITION 11. 5(A) is @ T-ideal of S. If T is a group then 5(A)=A.
Conversely, if B(A)=A for any T-ideal A of S then both T and S will be groups.

PROOF. Let a€8(A). Then ta€A for some ¢ET. Let {,ET. Then ¢ ,(ta)EA
l.e. t(t; a)EA so t, a&5(A). Hence 5(A) is a T-ideal of S. Next, let T be a
subgroup of S. Obviously, ACA(A). Let e=B(A). So tacA for some IET.
Then a=t_1(ta)EA. So B(A)CA. Hence A=5(A). Conversely, let S(A)=A for
every T-ideal A of §. Now Ta is a T-ideal of § where e&7. So fS(Tu)=Ta.
But from definition 8(Te)=T. So Te=T. Hence T is a group. Similarly, we
can show that S is a group.

PROPOSITION 12. A subgroup A of a group G will be left T-ideal iff it is a
right T-ideal.

A semigroup S is said to have the properties &, Sor 7 if the relation L,NL,
=L,L,, RNR,=RR, or LNR =Lk, hold for left T-ideals L;, L, and right
T-ideals R,, R, of S.

PROPOSITION 13. In a semigroup S having property « (5 or y) every left
(right, one sided) T-ideal is a right (left, two sided) T-ideal.

FRCOF. Let S be a semigroup having property a. Let Z; be a left T-ideal of
S. Now L,=L,NS=L,S i.e. L, is alco a right ideal and hence a right T-ideal
-of S.

PROPOSITION 14. Let S be a semigroup having property v (o or 5) and T be
@ subsemigroup of S. Then T is a normal subseinigroup of S.
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PROOF. Let S be a semigroup having the property y(a or 8) and ¢=S. Now
Ta is a left T-ideal of S and hence also a right T-ideal of S. Now Te=TaNTa
=Taq Ta. Similarly we have e¢T=aTNaT=aT aT. Since aT is a two sided
T-ideal of S, so T(aT)CaT. Hence Ta TaCea Ta. SoaTa is also a left T-ideal
and hence a two sided T-ideal of S. So by property 7. Ta Te=aTe(\Ta Ta=a
Ta Ta Te. Similarly ¢T aT=a Ta Ta Ta. So Te Ta=aT aT. Hence el'=Ta.
So T is normal subsemigroup of S.

COROLLARY. A subsemigroup T of a group G will be a normal subgroup if
the complement of any T-ideal is @ T-ideal.

PROOF. Corollary follows from Proposition 2 and 14.
PROPOSITION 15, A semigroup S having the property y is regular.

PROPOSITION 16, A semigroup S having the property vy is a semilattice of
groups.

Proposition 15 and 16 follows from Theorems 3 & 4 [1] since every ideal is a
T-ideal.

I beg to thank Dr. M.K. Sen for his guidence in the preparation of this
paper.
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