CONDITIONS FOR RINGS OF TYPE-A TO BE BOOLEAN

By Young Lim Park

In solving a problem proposed by D. Jacobson [1], E. Wong, among other solvers, proved in [4] that if R is a commutative regular ring and 1 is the only unit in R, then R is a Boolean ring. And this result can be extended to a class of associative (not necessarily commutative) rings. Later, H. Myung proved in [2] that an alternative ring R with identity 1 is a Boolean ring if and only if R is von Neumann regular and 1 is the only unit. Recently R. A. Melter [2] proposed the following problem: in which rings is the following proposition valid: $x=y$ if and only if $(1-x+x y)(1-y+y x)=1$? In this note, we shall provethat if R is an alternative ring and 1 is the only unit, then the condition $x=y$ iff $(1-x+x y)(1-y+y x)=1$ holds in R if and only if R is von Neumann regular, i.e. a Boolean ring.

Let R be a ring, not necessarily associative or commutative. R is said to be of type-A if, for an idempotent e and an element a in R, the subalgebra of R generated by e and a is associative. It is clear that the class of rings of type- A is a generalization of the class of alternative rings in the sense that the subalgebra of an alternative ring generated by any two elements is associative [Artin's theorem]. Thus, all associative rings are of type- A.

The following definition is an appropriate extension of regular rings for a wider class of rings.

DEFINITION. A ring R is said to be strongly regular if for each $a \in R$ thereexists an element b in R such that ($a b$) $a=a$ and the subalgebra of R generated by a and b is associative.

It is clear that for alternative rings or associative rings, the concept of strong regularity is identical with that of the usual regularity. The following lemma is a slight modification of a well known fact.

LEMMA. Let R be a unitary ring of type-A without nonzero nilpotents. If the elements a and b of R satisfy $(a b) a=a$ and the subalgebra of R generated by a : and b is associative, then there is a unit element s in R such that $(a s) a=a$.

THEOREM. Let R be a unitary ring of type-A. The following statements are

equivalent:

(1) R is Boolean.
(2) For $x, y \in R, x=y$ iff $(1-x+x y)(1-y+y x)=1$ and $a^{2}=1$ holds for onls $a=1$.
(3) R is strongly regular and 1 is the only unit.

PROOF. (1) $\Longrightarrow(2)$. The second part is trivial. Suppose $x=y$. Then $(1-x+x y)$ $(1-y+y x)=\left(1-x+x^{2}\right)^{2}=1$. Conversely, let $(1-x+x y)(1-y+y x)=1$. We show that every unit is equal to 1 . Let u be a unit in R. Since R is of type- A, the subalgebra generated by u and u^{-1} is associative. Thus, $1=u^{-1} u=u^{-1} u^{2}=u^{-1}$ ($u u$) $=\left(u^{-1} u\right) u=u$. This implies $1-x+x y=1$ and $1-y+y x=1$. That is $x=x y=$ $y x=y$.
(2) $\Longrightarrow(3)$. Let $x \in R$. Then $\left(1-x+x^{2}\right)^{2}=1$, and hence $1-x+x^{2}=1$. Thus $x^{2}=x$, i. e. x is an idempotent. Now, we show that if $(x y) x=x$ for some $y \in R$, then the subalgebra generated by x and y is associative. This is in fact clear, because R is of type $-A$ and both x and y are idempotent. That is, R is strongly regular. Let u be a unit. Then $u^{2}=u$. Again, $u=\left(u^{-1} u\right) u=u^{-1} u^{2}=u^{-1} u=1$.
$(3) \Longrightarrow(1)$. Let $a^{2}=0$ in R. Then $1=1-a^{2}=(1-a)(1+a)$. This implies that $1-a=1$, and hence $a=0$. That is, the ring R has no non-zero nilpotents. By the Lemma, for each $x \in R$, there exists a unit s in R such that $(x s) x=x$. But $s=1$. That is, $x^{2}=x$. This completes the proof.

COROLLARY. Let R be a unitary ring of type $-A$. Then R is Boolean iff it is alternative regular and 1 is the only unit in R.

REMARK. There is a class of rings that are far different from being type- A yet satisfying the conditions of the theorem. We consider the algebra R over Z_{2} generated by the set $\left\{1, s_{1}, s_{2}, s_{3}\right\}$ with the following operation, $s_{i}^{2}=s_{i}(i=1$, 2, 3), $s_{1}=s_{1} s_{i}=s_{i} s_{1}(i=2,3)$ and $s_{2} s_{3}=s_{3} s_{2}=0$. This ring has been considered in [2], and it is claimed to be not Boolean. However, one notes that the requirement for a ring to be Boolean is only the idempotency $a^{2}=a$. Therefore, a Boolean ring is not assumed to be associative. In fact, the ring defined above is a nonassociative Boolean ring in this context. Now we observe that the ring satisfies all the conditions in the theorem, but unfortunately it is not of type- A. Suppose it was of type- A. Then by the corollary it would be alternative. But the ring is not alternative. For example, let $a=s_{1}+s_{2}$ and $b=s_{2}+s_{3}$. Then $a b=$
s_{2}, and thus $a(a b)=s_{1}+s_{2}$. On the other hand, $a^{2} b=a b=s_{2}$. That is, $a^{2} b \neq a(a b)$.

University of Toronto
Toronto, Ontario M5S 1A7

REFERENCES

[1] D. Jacobson, Elementary problem E2387, Amer. Math. Monthly (1972), 1134.
[2] R.A. Melter, Elementary problem E2825, Amer. Math. Monthly 87(1980), 220.
[3] H.C. Myung, Conditions for alternative rings to be Boolean, Algebra Univ. 5(1975), 337-339.
[4] Y.L. Park, Equation $(1-x+x y)(1-y+y x)=1$ in rings, Amer. Math. Monthly Vol. 88 , No. 8(1981), 620.
[5] E.T. Wong, Conditions for a regular ring to be Boolean, Amer. Math. Monthly 81 (1974), 86-87.

