A NOTE ON GENERIC SUBMANIFOLDS OF AN ODD-DIMENSIONAL SPHERE

By U- ang Ki and Young Ho Kim

0. Introduction

Recently many papers on generic submanifolds of a Riemannian manifold have been submitted by several authors who found out a general notion of an intrinsic character of hypersurfaces by using various methods (see [3], [4], [5], [6], [7] and [8]).

But the present authors [6] studied a generic submanifold M of an odd-dimensional sphere $S^{2m+1}(1)$ under the condition that the structure tensor f induced on M and the second fundamental tensor h commute.

The purpose of the present paper is to explore the generic submanifolds of an odd-dimensional sphere tangent to the Sasakian structure vector when the structure tensor f and the second fundamental tensor h anticommute.

In 1, we recall fundamental properties and structure equations for generic submanifolds immersed in a Sasakian manifold and define the structure tensor induced on M is antinormal.

In 2, we look into the fundamental properties of submanifolds of S^{2m+1} (1) and introduce some theorems for later use.

In the last 3, we characterize the generic submanifold of $S^{2m+1}(1)$ tangent to the Sasakian structure vector field.

1. Generic submanifolds of a Sasakian manifold

Let M^{2m+1} be a (2m+1)-dimensional Sasakian manifold covered by a system of coordinate neighborhoods $\{U:z^h\}$ and (F_j^h,g_{ji},ξ^h) the set of structure tensors of M^{2m+1} , where here and in the sequel the indices h, i, j and k run over the range $\{1, 2, \dots, 2m+1\}$. We then have

(1.1)
$$F_{j}^{h}F_{i}^{j} = -\delta_{i}^{h} + \xi_{i} \xi^{h}, \quad \xi_{j}F_{i}^{j} = 0, \quad F_{j}^{h}\xi^{j} = 0,$$
$$\xi_{j}\xi^{j} = 1, \quad \xi_{j} = g_{ji}\xi^{i}, \quad F_{j}^{h}F_{i}^{h}g_{hk} = g_{ji} - \xi_{j}\xi_{i}$$

and

$$\nabla_{j}\xi^{h} = F_{j}^{h}, \quad \nabla_{j}F_{i}^{h} = -g_{ji}\xi^{h} + \delta_{j}^{h}\xi_{i},$$

where ∇_j denotes the operator of covariant differentiation with respect to g_{ji} . Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V:x^a\}$, which is isometrically immersed in M^{2m+1} by the immersion $i:M\longrightarrow M^{2m+1}$, and identify i(M) with M itself and represent the immersion i by $y^h=y^h(x^a)$ (throughout this paper the indices a, b, c, d and e run over the range $\{1, 2, \cdots, n\}$). If we put $B_b^h=\partial_b y^h$, $\partial_b=\partial/\partial x^b$, then B_b^h are n linearly independent vectors of M^{2m+1} tangent to M. Denoting by g_{cb} the fundamental metric tensor of M, we then have

$$(1.3) g_{cb} = B_c^{\ j} B_b^{\ i} g_{ji}$$

because the immersion is isometric.

We now denote by C_x^h 2m+1-n mutually orthogonal unit normals of M (the indices u, v, w, x, y and z run over the range $\{n+1, \cdots, 2m+1\}$). Thus, denoting ∇_c by the operator of van der Waerden-Bortolotti covariant differentiation with respect to the Christoffel symbols $\{a \\ c \ b\}$ formed with g_{cb} , we obtain equations of Gauss and Weingarten

$$\nabla_c B_b^h = h_{cb}^{\ \ x} C_x^h,$$

$$\nabla_c C_x^h = -h_c^a x B_a^h$$

respectively, where $h_{cx}^{\ b}$ are the second fundamental forms with respect to the normals $C_x^{\ h}$ and $h_{c\ x}^{\ a} = h_{cb}^{\ y} g^{ab} g_{xy}$, g_{xy} being the metric tensor of the normal bundle of M given by $g_{xy} = g_{ji} C_x^{\ j} C_y^i$, and $(g^{cb}) = (g_{cb})^{-1}$.

A submanifold M of a Sasakian manifold M^{2m+1} is called a *generic* (an *antiholomorphic*) submanifold if the normal space $N_p(M)$ of M at any point $P \in M$ is always mapped into the tangent space $T_p(M)$ by the action of the structure tensor F of the ambient manifold M^{2m+1} , that is, $FN_p(M) \subset T_p(M)$ for all $P \in M$ (see [6], [7]).

From now on, we consider throughout this paper generic submanifolds immersed in a Sasakian manifold M^{2m+1} . Then we can put in each coordinate neighborhood

(1.6)
$$F_{j}^{h}B_{c}^{j} = f_{c}^{a}B_{a}^{h} - f_{c}^{x}C_{x}^{h},$$

(1.7)
$$F_{i}^{h}C_{x}^{j} = f_{x}^{a}B_{a}^{h},$$

$$\xi^h = \eta^a B_a^h + \xi^x C_x^h,$$

where f_c^a is a tensor field of type (1,1) defined on M, f_c^x a local 1-form for each fixed index x, η^a a vector field and ξ^x a function for each fixed index x, and $f_x^a = f_c^y g^{ac} g_{yx^*}$

Applying F to (1.6) and (1.7) respectively and using (1.1) and these equations, we easily find ([3], [7], [8])

(1.9)
$$\begin{cases} f_{c}^{e} f_{e}^{a} = -\delta_{c}^{a} + f_{c}^{x} f_{x}^{a} + \eta_{\epsilon} \eta^{a}, \\ f_{c}^{e} f_{e}^{x} = -\eta_{c} \xi^{x}, \\ f_{x}^{e} f_{e}^{y} = \delta_{x}^{y} - \xi_{x} \xi^{y}, \\ \eta^{e} f_{e}^{a} = -\xi^{x} f_{x}^{a}, \quad \eta^{e} f_{e}^{x} = 0, \\ g_{de} f_{c}^{d} f_{b}^{e} = g_{cb} - f_{c}^{x} f_{xb} - \eta_{c} \eta_{b}, \\ \eta_{a} \eta^{a} + \xi_{x} \xi^{x} = 1, \end{cases}$$

where $\eta_a = g_{ea} \eta^e$. But, the last relationship follows from (1.3), (1.8) and the fact that $\xi_i \xi^j = 1$.

Putting $f_{cb} = f_c^a g_{ba}$ and $f_{cx} = f_c^y g_{yx}$, then we easily verify from (1.9) that $f_{cb} = -f_{bc}$ and $f_{cx} = f_{xc}$.

When the submanifold M is a hypersurface of M^{2m+1} , (1.9) becomes the so-called (f, g, u, v, λ) -structure ([1], [2]), where we have put $f_c^x = u_c$, $\eta^a = v^a$, $\xi^x = \hat{\xi}_x = \lambda$.

The aggregate $(f_c^a, g_{cb}, f_c^x, \eta^a, \xi^x)$ satisfying (1.9) is said to be *antinormal* ([3], [7]) if

$$(1.10) h_{c x}^{e} f_{e}^{a} + f_{c}^{e} h_{a x}^{e} = 0$$

holds, or equivalently

$$(1.11) h_{ce}^{\ x} f_b^{\ e} = h_{be}^{\ x} f_c^{\ e}.$$

Transvecting (1.11) with f_a^b and using the first relation of (1.9), we find

$$h_{ce}^{x}(-\delta_{a}^{e}+f_{a}^{z}f_{z}^{e}+\eta_{a}\eta^{e})=h_{be}^{x}f_{c}^{e}f_{a}^{b},$$

from which, taking the skew-symmetric part with respect to the indices c and a,

$$(1.12) \qquad (h_{ce}^{x} f_{z}^{e}) f_{a}^{z} - (h_{ae}^{x} f_{z}^{e}) f_{c}^{z} + (h_{ce}^{x} \eta^{e}) \eta_{a} - (h_{ae}^{x} \eta^{e}) \eta_{c} = 0.$$

Differentiating $(1.6)\sim(1.8)$ covariantly along M and using $(1.1)\sim(1.5)$, we find respectively (see [3], [6], [7])

(1.13)
$$\nabla_{c} f_{b}^{a} = -g_{ch} \eta_{a} + \delta_{c}^{a} \eta_{b} + h_{cb}^{x} f_{x}^{a} - h_{cax} f_{b}^{x},$$

(1.14)
$$\nabla_{c} f_{b}^{x} = g_{cb} \xi^{x} + h_{ce}^{x} f_{b}^{e},$$

$$(1.15) h_{ecx} f_e^y = h_c^{ey} f_{ex},$$

$$\nabla_c \eta_b = f_{cb} + h_{cb}^x \xi_x,$$

$$\nabla_{c} \xi^{x} = -f_{c}^{x} - h_{ce}^{x} \eta^{e}$$

with the aid of $(1.6)\sim(1.8)$.

2. Intrinsic properties of submanifolds of $S^{2m+1}(1)$

Let M be an n-dimensional submanifold of an odd-dimensional unit sphere $S^{2m+1}(1)$, then the equations of Gauss, Codazzi and Ricci for M are respectively given by

$$(2.1) K_{dch}^{\ a} = \delta_d^{\ a} g_{ch} - \delta_c^{\ a} g_{dh} + h_{dx}^{\ a} h_{ch}^{\ x} - h_{cx}^{\ a} h_{dh}^{\ x},$$

$$\nabla_d h_{cb}^{\ x} - \nabla_c h_{db}^{\ x} = 0,$$

(2.3)
$$K_{dcy}^{\ \ x} = h_{de}^{\ x} h_{cy}^{\ e} - h_{ce}^{\ x} h_{dy}^{\ e},$$

 K_{dcb}^{a} and K_{dcy}^{a} being the curvature tensor of M and that of the connection induced in the normal bundle respectively.

From the Ricci identity

$$\nabla_d \nabla_c h_{ba}^{\ x} - \nabla_c \nabla_d h_{ba}^{\ x} = -K_{dcb}^{\ e} h_{ae}^{\ x} - K_{dca}^{\ e} h_{be}^{\ x},$$

we have

$$(2.4) (g^{da}\nabla_{d}\nabla_{a}h_{cb}^{x})h_{x}^{cb} - (\nabla_{c}\nabla_{b}h^{x})h_{x}^{cb} = K_{ce}h_{be}^{y}h_{be}^{cb} - K_{dcba}h^{day}h_{y}^{cb}$$

because of (2.2), where we have put $h^x = g^{cb} h_{cb}^x$, $K_{dcba} = K_{dcb}^e g_{ae}$, $K_{cb} = g^{da} K_{dcba}$. We have from (2.1)

(2.5)
$$K_{cb} = (n-1)g_{cb} + h^{x}h_{cbx} - h_{cx}^{e}h_{be}^{x},$$

which implies

(2.6)
$$K = n(n-1) + h^{x}h_{x} - h_{cb}^{x} h^{cb}_{x},$$

K being the scalar curvature of M.

We now suppose that the connection induced in the normal bundle of M is flat, that is, $K_{dcy}^{\quad x}=0$. Then we have from (2.3)

$$(2.7) h_{de}^{x} h_{cy}^{e} = h_{ce}^{x} h_{dy}^{e}.$$

Substituting (2.1) and (2.5) into (2.4) and taking account of the identity

$$\frac{1}{2} \Delta (h_{cb}^{x} h_{cb}^{cb}) = (g^{da} \nabla_{d} \nabla_{a} h_{cb}^{x}) h_{x}^{cb} + \|\nabla_{d} h_{cb}^{x}\|^{2},$$

we have

(2.8)
$$\frac{1}{2} \Delta (h_{cb}^{x} h_{x}^{cb}) = n h_{cb}^{x} h_{x}^{cb} - h_{x} h_{x}^{x} + h_{x}^{x} h_{cex} h_{b}^{ey} h_{y}^{cb} - (h_{cb}^{x} h_{x}^{cby}) (h_{dax} h_{y}^{da}) + (\nabla_{c} \nabla_{b} h_{x}^{x}) h_{x}^{cb} + \|\nabla_{d} h_{cb}^{x}\|^{2}$$

with the help of (2.7), where Δ is the Laplacian given by $\Delta = g^{da} \nabla_d \nabla_a$.

For a submanifold of an m-dimensional sphere S^m , K. Yano and M. Kon [10] proved the following theorem:

THEOREM A. Let M be a complete n-dimensional submanifold of S^m with flat normal connection. If the second fundamental form of M is parallel, then M is a small sphere, a great sphere or a pythagorean product of a certain number of spheres. Moreover, if M is of essential codimension m-n, then M is a pythagorean product of the form

$$S^{p_1}(r_1) \times \cdots \times S^{p_N}(r_N), \quad r_1^2 + \cdots + r_N^2 = 1, \quad N = m - n + 1,$$

or a pythagorean product of the form

$$S^{\phi_1}(r_1) \times \cdots \times S^{\phi_N'}(r_{N'}) \subset S^{m-1}(r) \subset S^m, r^2 + \cdots + r^2 = r^2 < 1, N' = m - n.$$

On the other hand, by K. Yano and M. Kon [10] and K. Yano and S. Ishihara [11], we can easily obtain the following theorem:

THEOREM B. Let M be a complete minimal submanifold of dimension n immersed in S^m with parallel second fundamental form and flat normal connection. If the length of second fundamental form is constant, then M is a great sphere of S^m or a pythagorean product of the form

$$S^{b_1}(r_1) \times \cdots \times S^{b_N}(r_N), \quad r_i = \sqrt{p_i/n} \quad (t=1, \dots, N),$$

and with essential codimension N-1, where $p_1, \dots, p_N \ge 1$, $p_1 + \dots + p_n = n$.

3. Generic submanifolds of an odd-dimensional sphere $S^{2m+1}(1)$ tangent to the Sasakian structure vector field

In this section we assume that the Sasakian structure vector field defined on S^{2m+1} (1) is tangent to the submanifold M, that is, $\xi^x = 0$ identically, the normal connection of M is flat and (1.11) is satisfied. Then (1.9) reduces to

$$\begin{cases} f_c^e f_e^a = -\delta_c^a + f_c^x f_x^a + \eta_c \eta^a, \\ f_c^e f_e^x = 0, \quad \eta^e f_e^a = 0, \quad \eta^e f_e^x = 0, \\ f_x^e f_e^y = \delta_x^y, \\ g_{de} f_c^d f_b^e = g_c^b - f_c^x f_{xb} - \eta_c \eta_b, \\ \eta_e \eta^e = 1 \end{cases}$$

and (1.14)~(1.17) to

$$\nabla_c f_b^x = h_{ce}^x f_b^e,$$

$$h_{ce}^{x} f_{e}^{y} = h_{c}^{ey} f_{ex},$$

$$\nabla_{c} \eta_{b} = f_{cb},$$

$$(3.5) h_{c_a}^{x} \eta^e = -f_c^{x}.$$

LEMMA 3.1. Let M be an n-dimensional generic submanifold with flat normal connection of an odd-dimensional unit sphere S^{2m+1} (1). If the structure induced on M is antinormal and the Sasakian structure vector on S^{2m+1} (1) is tangent to M, then we have

$$(3.6) \quad \frac{1}{2} \Delta (h_{cb}^{x} h_{x}^{cb}) = 2(n-m-1) \left[2h_{cb}^{x} h_{x}^{cb} + h_{x} h^{x} \right] + (\nabla_{c} \nabla_{b} h^{x}) h_{x}^{cb} + \|\nabla_{d} h_{cb}^{x}\|^{2}.$$

PROOF. Transvecting (1.11) with $f_v^b f_d^c$ and taking account of (3.1).

$$-h_{bd}^{x}f_{y}^{b}+(h_{be}^{x}\eta^{e})f_{y}^{b}\eta_{d}+(h_{be}^{x}f_{y}^{b}f_{z}^{e})f_{d}^{z}=0.$$

from which, using (3.5),

(3.7)
$$h_{ce}^{\ x} f_{y}^{\ e} = P_{yz}^{\ x} f_{c}^{\ z} - \delta_{y}^{\ x} \eta_{c},$$

where we have put

$$P_{yz}^{\ x} = h_{cb}^{\ x} f_y^{\ c} f_z^{\ b}$$
.

We put $P_{yzx} = P_{yz}^{\ \ w} g_{wx}$, then we see from (3.3) that P_{yzx} is symmetric for all

indices.

If we transvect (1.11) with f^{cb} and make use of (3.1), then we get

$$h^{x} = h_{ce}^{x} f_{z}^{e} + h_{ce}^{x} \eta^{c} \eta^{e}$$
,

or, use (3.5) and (3.7),

$$(3.8) h^x = P^x,$$

where we have put $P^x = g^{yz} P_{yz}^x$

Since the normal connection of the submanifold M is flat, by transvecting (2.7) with f_{s}^{b} and taking account of (3.5) and (3.7), we get

$$P_{yz}^{\ \ w}(P_{wv}^{\ \ x}f_{c}^{\ v}-\hat{\sigma}_{w}^{\ x}\eta_{c})+g_{yz}f_{c}^{\ x}=P_{wz}^{\ \ x}(P_{wy}^{\ \ w}f_{c}^{\ v}-\hat{\sigma}_{y}^{\ w}\eta_{c})+\hat{\sigma}_{z}^{\ x}f_{cy},$$

from which, transvecting f_u^c and using (3.1),

$$(3.9) P_{yz}^{w} P_{wu}^{x} + g_{yz} \delta_{u}^{x} = P_{wz}^{x} P_{uv}^{w} + \delta_{z}^{x} g_{yu}^{x}$$

Contraction with respect to the indices x and z yields

(3.10)
$$P_{yzx}P_{u}^{zx} = P_{z}P_{yu}^{z} + (p-1)g_{yu},$$

where p=2m+1-n, and consequently

(3.11)
$$P_{xyz}p^{xyz} = h_x h^x + p(p-1)$$

with the aid of (3.8).

Differentiating (3.7) covariantly and substituting (3.2) and (3.4), we find

$$(\nabla_{a}h_{ce}^{\ x})f_{y}^{\ e}+h_{c}^{\ ex}h_{day}f_{e}^{\ a}=(\nabla_{a}P_{yz}^{\ x})f_{c}^{\ z}+P_{yz}^{\ x}h_{de}^{\ z}f_{c}^{\ e}-\partial_{y}^{\ x}f_{dc},$$

from which, taking the skew-symmetric part with respect to d and c, and using (1.11) and (2.2),

$$(3.12) 2h_c^{ex} h_{eay} f_d^a = (\nabla_d P_{yz}^x) f_c^z - (\nabla_c P_{yz}^x) f_d^z - 2\delta_y^z f_{dc}^*$$

If we transvect (3.12) with f_w^d and use (3.1), then we obtain

$$\nabla_d P_{yz}^{\ x} = (f_z^e \nabla_e P_{yw}^x) f_c^w$$
.

Substituting this into (3.12) and using $P_{yz}^{\ x} = P_{zy}^{\ x}$, we have

$$h_{cex}h_{ay}^{e}f_{d}^{a}=g_{yx}f_{cd}.$$

Transvection f d gives

$$h_{cex}h_{a}^{eg}(-\delta_{b}^{a}+f_{b}^{z}f_{z}^{a}+\eta_{b}\eta^{a})=g_{yx}(g_{cb}-f_{c}^{z}f_{bz}-\eta_{c}\eta_{b}),$$

from which, using (3.5) and (3.7),

$$(3.13) \quad h_{cex}h_b^{\ e}_{\ y} = P_{yz}^{\ w}P_{wvx}f_c^{\ v}f_b^{\ z} - P_{yzx}(f_b^{\ z}\eta_c + f_c^{\ z}\eta_b) + 2g_{yx}\eta_c\eta_b + f_{cx}f_{by} \\ -g_{yx}(g_{cb} - f_c^{\ z}f_{bz}).$$

Transvecting (3.13) with g^{cb} and taking account of (3.1) and (3.10), we get $h_{cb}h^{cb}_{c} = P^z P_{zyz} + (2p+2-n)g_{yz},$

from which,

(3.14)
$$h_{cb}^{x} h_{x}^{cb} = h_{x} h^{x} + p(2p+2-n)$$

and

$$(3.15) \quad (h_{cb}^{\ x}h^{cby})(h_{dax}h^{da}_{\ y}) = P_{yzx}h^{y}h^{z}h^{x} + (p-1)h_{x}h^{x} + 2(2p+2-n)h_{x}h^{x} + b(2p+2-n)^{2}$$

with the help of (3.8) and (3.10).

Since we have from (3.10) and (3.13)

$$h_{ce}^{\ x}h_{b}^{\ e}=P^{x}P_{xyz}f_{c}^{\ y}f_{b}^{\ z}+2p(f_{b}^{\ x}f_{cx}+\eta_{c}\eta_{b})-P^{x}(f_{bx}\eta_{c}+f_{cx}\eta_{b})-pg_{cx}$$

it follows that

(3.16)
$$h^{x}h_{oax}h_{cy}^{a}h^{cby} = P_{yzx}h^{y}h^{z}h^{x} + (2p+1)h_{x}h^{x}$$

because of $(3.7)\sim(3.10)$.

Substituting (3.14) and (3.15) into (2.8), we find

$$\frac{1}{2}\Delta(h_{cb}^{\ x}h_{x}^{cb}) = (n-p-1)\left\{3h_{x}h_{x}^{x} + 2p(2p+2-n)\right\} + (\nabla_{c}\nabla_{b}h_{x}^{x})h_{x}^{cb} + \|\nabla_{d}h_{cb}^{\ x}\|^{2},$$

from which, using (3.14) and the fact that p=2m+1-n,

$$\frac{1}{2}\Delta(h_{cb}^{x}h_{cb}^{cb}) = 2(n-m-1)\left\{2h_{cb}^{x}h_{c}^{cb} + h_{x}h^{x}\right\} + (\nabla_{c}\nabla_{b}h^{x})h_{x}^{cb} + \|\nabla_{d}h_{cb}^{x}\|^{2}.$$

Thus, Lemma 3.1 is completely proved.

LEMMA 3.2. Let M be an n-dimensional generic submanifold with flat normal connection of an odd-dimensional sphere $S^{2m+1}(1)$ whose Sasakian structure vector is tangent to M. If the structure tensor induced on M is antinormal and the mean curvature vector is parallel in the normal bundle, then M is of dimension m+1 with parallel second fundamental form.

PROOF. Since the mean curvature vector is parallel in the normal bundle, it is shown from (3.14) that $h_{cb}^{\ x} h_{\ x}^{cb}$ is constant. Thus (3.6) impiles

$$(3.17) (n-m-1) \{2h_{cb}^{\ x}h_{x}^{cb} + h_{x}h^{x}\} = 0$$

and

$$\nabla_d h_{cb}^{\ x} = 0.$$

But, we can see from the first relationship of (3.1) that $n \ge m+1$. If $2h_{cb}^{\ x} h_{x}^{cb} + h_{x}h^{x} = 0$ and hence $h_{cb}^{\ x} = 0$, then (3.5) becomes $P_{yz}^{\ x} f_{c}^{\ z} - \delta_{y}^{\ x} \eta_{c} = 0$. Transvection with η^{c} gives p = 2m+1-n because of (3.1). It contradicts the fact that the codimension $p \ge 1$. And consequently n = m+1. Therefore, our lemma is proved.

On the other hand, the submanifold M does not admit any umbilical section because of (3.7) and hence M is of essential codimension m. Thus, combining Lemma 3.1, 3.2 and this fact with Theorem A and B in 2, we have

THEOREM 3.3. Let M be an n-dimensional complete generic submanifold with flat normal connection of an odd-dimensional unit sphere S^{2m+1} (1). Suppose that the mean curvature vector is parallel in the normal bundle and the induced structure on M is antinormal. If the Sasakian structure vector defined on S^{2m+1} (1) is tangent to the submanifold, then M is a pythagorean product of the form

$$S^{1}(r_{1})\times\cdots\times S^{1}(r_{m+1}),\quad r_{1}^{2}+\cdots+r_{m+1}^{2}=1,\quad r_{t}\neq\sqrt{1/m+1},\quad (t=1,\ 2,\ \cdots,\ m+1).$$

Kyungpook University

REFERENCES

[1] Blair, D.E., G.D. Ludden and	K. Yano, Hypersurfaces of an odd-dimensional sphere,
J. Diff. Geo., 5(1971), 479-486.	
[2] Ishihara, S. and U-H. Ki, Com	plete Riemannian manifolds with (f, g, u, v, \lambda)-struc-
ture, J. Diff. Geo., 8(1873), 541-	-554.
[3] Ki, U-H., On generic submanif	olds with antinormal structure of an odd-dimensional
sphere, to appear in Kyungpook M	Math. J.
[4] and J.S. Pak, Generic	submanifolds of an even-dimensional Euclidean space,
to J. Diff. Geo., 16(1981), 293-30	3.
[5] and Y.	H. Kim, Generic submanifolds of a complex projective
space with parallel mean curvatur	e vector, Kodai Math J., 4(1981), 137-151.
[6], and, Gener	ic submanifolds of an odd-dimensional sphere, to
appear.	
[7] . Genera	c submanifolds with parallel mean curvature vector of

an odd-dimensional sphere, Kodai Math. J., 4(1981), 353-370.

- [8] Okumura, M., Submanifolds of real codimension of a complex projective space, Atti della Accademia Nazionale dei Lincei, 4(1975), 544-555.
- [9] Pak, J.S., Note on anti-holomorphic submanifolds of real codimension of a complex projective space, Kyungpook Math. J., 20(1980), 59-76.
- [10] Yano, K. and M. Kon, Generic submanifolds, Annali di Mat., 123(1980), 59-92.
- [11] _____, and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Diff. Geo., 6(1971), 95-118.

-THARRATT -