LINE COMPLEXES IMMERSED IN A PROJECTIVE SPACE WITH RULED ABSOLUTE

By M. A. Soliman and N.H. Abdel

1. Introduction

We consider an three-dimensional projective space P_{3} referred to a moving frame $\left\{A_{i}\right\}$ of four linearly independent analytic points $A_{1}, A_{2}, A_{3}, A_{4}$. An infinitesimal displacement of such a frame is determined by the equations,

$$
\begin{equation*}
d A_{i}=\omega_{i}^{j} A_{j} \quad(i, j, X=1, \cdots, 4) \tag{1.1}
\end{equation*}
$$

where the one-forms ω_{i}^{j} (Pfaff's differential forms) are invariant one-forms of the projective group $P G(3, R)$ whose structural equations have the form

$$
\begin{equation*}
D \omega_{i}^{j}=\omega_{i}^{k} \wedge \omega_{k}^{j} \tag{1.2}
\end{equation*}
$$

We consider the gecmetry belonging to a subgroup H_{1}^{3} of the group $P G(3, R)$, the transformations in the subgroup H_{1}^{3} do not move a ruled surface σ. In [1], it was shown that in a partially canonical moving frame $\left\{A_{i}\right\}$, the ruled surface (absolute) σ is determined by the equation

$$
\begin{equation*}
x^{1} x^{2}-x^{3} x^{4}=0 \tag{1.3}
\end{equation*}
$$

where the points $A_{1}, A_{2}, A_{3}, A_{4}$ are located on σ and $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=1$. The conditions of the stationary subgroup H_{1}^{3} of the projective grour, $\operatorname{PG}(3, R)$ are

$$
\left.\begin{array}{ll}
\omega_{1}^{2}=\omega_{2}^{1}=0, & \omega_{4}^{3}=\omega_{3}^{4}=0, \tag{1.4}\\
\omega_{3}^{2}-\omega_{1}^{4}=0, & \omega_{2}^{3}-\omega_{4}^{1}=0 \\
\omega_{1}^{3}-\omega_{4}^{2}=0, & \omega_{3}^{1}-\omega_{2}^{4}=0, \\
\omega_{1}^{1}+\omega_{2}^{2}=0, & \omega_{3}^{3}+\omega_{4}^{4}=0
\end{array}\right]
$$

From (1.1) and (1.4) it follows that, there exist two families of generators $\Phi_{1}=\left\{A_{2} A_{3}, A_{1} A_{4}\right\}$ and $\Phi_{2}=\left\{A_{1} A_{3}, A_{2} A_{4}\right\}$ of the absolute σ.

The set of all lines iii the space P_{3} is called the Grassman manifold $\operatorname{Gr}(1,3)$. It is well known $\operatorname{dim} \operatorname{Gr}(1,3)=4$. A smooth r-dimensional submanifold will be denoted by $\operatorname{Gr}(1,3, r)(1 \leq r \leq 4)$.

DEFINITION 1.1. A three-dimensional \{two-dimensional\} submanifold of the Grassman manifold $\operatorname{Gr}(1,3)$ is called a line complex $\operatorname{Gr}(1,3,3)$ \{ a line congruence
$\operatorname{Gr}(1,3,2)\}$ immersed in P_{3}.

2. Line complexes embedded in P_{3} with ruled absolute

Let the points A_{1}, A_{2} be located on a moving straight line l of a line complex $\operatorname{Gr}(1,3,3)$. Then the invariance condition of l under an infinitesimal transformations of the subgroup H_{1}^{3} is of the form

$$
\omega_{p}^{\alpha}=0 \quad(p=1,2 ; \alpha=3,4) .
$$

Hence one-forms ω_{p}^{α} are the main forms of the Grassman manifold $\operatorname{Gr}(1,3)$. Thus, in such a frame the differential equation of a line complex $\operatorname{Gr}(1,3,3)$ have the form

$$
\begin{equation*}
\omega_{1}^{3}=a \quad \omega_{2}^{3}+b \quad \omega_{1}^{4}+\chi \omega_{2}^{4} \tag{2.1}
\end{equation*}
$$

in the first-order contact element of the generating element l of this complex.
Expanding the exterior quadratic equations corresponding to (2.1) by Cartan's lemma, we get that the equations for the infinitesimal variations of the quantities a, b, χ when the first-order parameters are fixed, are as follows

$$
\left\{\begin{array}{lll}
\delta a & \delta b & \delta \chi \tag{2.2}
\end{array}\right\}^{T}=M\left\{\pi_{1}^{1} \pi_{3}^{3}\right\}^{T}
$$

where

$$
M=\left[\begin{array}{lc}
2 a & 0 \\
0 & -2 b \\
2 \chi & -2 \chi
\end{array}\right], T \text { denotes matrix }
$$

transposition, δ is the symbol for differentiation with respect to the second order parameters and $\pi_{i}^{j}=\omega_{i}^{j}(\delta)$.

The system of quantities $\theta=\{a, b, \chi\}$ forms the first fundamental differential geometric object of the manifold $G_{r}(1,3,3)$ [5].

Therein, we give a geometric interpretation of the geometric object θ. Since the $\operatorname{lin} l=A_{1} A_{2}$ describes the line complex (2.1), we have the normal correspondence

$$
K: N(t)=A_{1}+t A_{2} \longleftrightarrow \Sigma(N(t)): x^{3}-\lambda x^{4}=0
$$

where

$$
\begin{equation*}
\lambda=(t+a) /(\chi-b t) \tag{2.3}
\end{equation*}
$$

We thus obtain a projective mapping of the points of the line l onto the sheaf of planes $x^{3}-\lambda x^{4}=0$. This mapping associates the invariant point $N_{1}=b A_{1}+\chi A_{2}$ with the plane $x^{4}=0$. The point N_{1} together with $N_{2}=b A_{1}-\chi A_{2}$, harmonically separates the pair of points A_{1} and A_{2}. If we put $t=0$ or $t=\infty$, then the
projective mapping (2.3) will determine two planes

$$
\begin{align*}
& \chi x^{3}-a x^{4}=0 \tag{2.4}\\
& b x^{3}+x^{4}=0 \tag{2.5}
\end{align*}
$$

from the sheaf of planes $x^{3}-\lambda x^{4}=0$. These two planes correspond to the points A_{1} and A_{2}. From (2.2), we get

$$
\begin{equation*}
\delta(1 / b)=2(1 / b) \pi_{3}^{3}, \quad \delta(a / \chi)=2(a / \chi) \pi_{3}^{3} \tag{2.6}
\end{equation*}
$$

since equations (2.6) are of form analogous to the equation $\delta \lambda=2 \lambda \pi_{3}^{3}$, which follows from the stationarity of any plane of the sheaf $x^{3}-\lambda x^{4}=0$, we conclude that the invariant planes (2.4) and (2.5) belong to the sheaf $x^{3}-7 x^{4}=0$.

DEFINITION 2.1. [6] A Grassman manifold $\operatorname{Gr}(1,3)$ with a field of correspondence K is called a nonholonomic complex $N G r(1,3,3)$ which determined by (2.1).

Generally, the matrix M has rank equal to two. For the general class of line complexes $\operatorname{NGr}(1,3,3)$ and from (2.2) we have

$$
\delta \chi=\chi(b \delta a+a \delta b) /(a b)
$$

i.e., we can take $\chi=a b$. This class of line complexes is defined by the system of linear differential equation

$$
\begin{equation*}
\omega_{1}^{3}-a \quad \omega_{2}^{3}=b\left(\omega_{1}^{4}+a \omega_{2}^{4}\right) \tag{3.7}
\end{equation*}
$$

and the associated exterior quadratic equations

$$
\begin{aligned}
& d a-2 a \omega_{1}^{1}=\mu_{1}\left(\omega_{2}^{3}+b \omega_{2}^{4}\right)+\mu_{2}\left(\omega_{1}^{4}+a \omega_{2}^{4}\right) \\
& d b+2 b \omega_{3}^{3}=\mu_{2}\left(\omega_{2}^{3}+b \omega_{2}^{4}\right)+\mu_{3}\left(\omega_{1}^{4}+a \omega_{2}^{4}\right)
\end{aligned}
$$

where $\mu_{1}, \mu_{2}, \mu_{3}$ are the invariants in the $2 n d$-order contact element. This is an involutive system, the nonuniqueness of its solution being characterized by one function of two arguments. Hence we have the following lemma.

LEMMA 2.1. The range of existence of a line complex $\operatorname{NGr}(1,3,3)$ embedded in P_{3} with ruled absolute comprises one arbitrary function of two arguments.

We state the results of our study of the geometry of two special classes of line complexes of the above type in the following sections [7].

3. Class of the holonomic line complexes $\mathrm{HGr}_{3}(\mathbf{1}, 3,3)$

In this section, we consider the special class of line complexes $N G r(1,3,3)$ in which the rank of the matrix M equal to zero, i.e., $a=b=\chi=0$. We denote the resulting manifold by $N G r_{3}(1,3,3)$ \{the lower index indicates the number of coefficients here which are equal to zero in equation (2.1)\}. Since the geometric object θ is empty and the normal correspondence is degenerate, the line complex $N G r_{3}(1,3,3)$ become a holonomic line complex $\mathrm{HGr}_{3}(1,3,3)$.

The line complex $\mathrm{HGr}_{3}(1,3,3)$ is defined by the Pfaffian equation

$$
\begin{equation*}
\omega_{1}^{3}=0 \tag{3.1}
\end{equation*}
$$

This is an involutive equation, the uniqueness of its solution being characterized by one arbitrary constant.

From (3.1), (1.1) and (1.4), it is easy to see that the generator $A_{1} A_{4} \in \Phi_{1}$ is fixed and A_{2} moves on the absolute σ. This complex consists of all bundles of lines with vertices on σ and $A_{1} A_{4}$ as a layer.

Analogous to the above investigation, we have three classes of line complexes $H G r_{3}(1,3,3)$ defined as follows:

The complete integrable Pfaffian equation

$$
\begin{equation*}
\omega_{1}^{4}=0 \tag{3.2}
\end{equation*}
$$

determines a line complex. This line complex constructed geometrically as the set of all bundles of lines with vertices on the absolute σ and $A_{1} A_{3} \in \Phi_{2}$ as a layer.
The involutive equation

$$
\begin{equation*}
\omega_{2}^{4}=0 \tag{3.3}
\end{equation*}
$$

characterizes a line complex which consists of the family of all bundles of lines with vertices on the absolute σ and $A_{2} A_{3} \in \Phi_{1}$ as a layer.

The differential equation

$$
\begin{equation*}
\omega_{2}^{3}=0 ; D \omega_{2}^{3}=0 \tag{3.4}
\end{equation*}
$$

defines a line complex. This line complex represented as the set of all bundles with layer $A_{2} A_{4} \in \Phi_{2}$ and vertices on the absolute σ. From the foregoing results, we have the following lemmas.

LEMMA 3.1. The intersection of the line complexes $\operatorname{HGr}_{3}(1,3,3)(3.1)$,
determines a hyperbolic linear congruences [8].

$$
\begin{equation*}
\omega_{1}^{3}=0, \quad \omega_{2}^{4}=0 \tag{3.5}
\end{equation*}
$$

with two directrices belonging to the family Φ_{1}.
LEMMA 3.2. The set of lines common to the line complexes $\operatorname{HGr}(1,3,3)$ (3.2), (3.4), that is, the set of lines satisfy the integrable system of equations.

$$
\begin{equation*}
\omega_{1}^{4}=0, \quad \omega_{2}^{3}=0 \tag{3.6}
\end{equation*}
$$

determines a hyperbolic linear congruence with two directrices belonging to the family Φ_{2}.

Therein, we give the parametric equations of one class of $\mathrm{HGr}_{3}(1,3,3)$ [9]. Say the class of line complexes (3.1). One way of obtaining an integral-free representation of such complexes is the following. We take a generator l of the ruled absolute σ, for each point on the absolute σ draw a bundle of lines with l as a layer. All these bundles construct the class of line complexes (3.1). Using this representation, we shall find the equations of the complexes (3.1) in Pluicker coordinates as follows: Consider two points $P_{1}(\lambda, 1,1, \lambda), P_{2}\left(1, \lambda, 1 / \lambda, \lambda^{2}\right)$. on the generator l of the absolute σ. Also any arbitrary point on σ is $Q(1, \nu$, $\left.\nu^{2}, 1 / \nu\right)$. The Plücker coordinates of the line $P Q$ which is a ray of the line complex $\left\{P=P_{1}+t P_{2}\right.$ is a point on $\left.l\right\}$ are

$$
\begin{align*}
& P^{12}=\nu(\lambda+t)-(1+\lambda t), \quad P^{13}=(\lambda+t)\left(\nu^{2}-1 / \lambda\right) \\
& P^{14}=(\lambda+t) / \nu-\lambda(1+\lambda t), \quad P^{23}=\nu^{2}(1+\lambda t)-\nu(1+t / \lambda) \tag{3.7}\\
& P^{24}=(1+\lambda t)(1 / \nu-\nu \lambda), \quad P^{34}=(\lambda+t) /(\lambda \nu)-\lambda \nu^{2}(1+\lambda t)
\end{align*}
$$

These equations depends on three parameters (λ, t, ν), they represent the parametric equations of the constructed line complex (3.1).

4. Class of the seminonholonomic line complexes $S N G r_{2}(1,3,3 ; h)$

We consider the special class of line complexes $\operatorname{NGr}(1,3,3)$ in which the rank of the matrix M equal to one. This class is classified in three separate subclasses. The matrix M has rank equal to one if and only if one of the following conditions
(I) $a=b=0$, (II) $a=\chi=0$, (III) $b=\chi=0$, is satisfied. We denote by $N G r_{2}$ $(1,3,3)$ the class of line complexes under investigation.

DEFINITION 4.1. [5] Let a field of a differential-geometric object θ having the same structure as the subobject $h \subset \theta$ be given on a line complex $\operatorname{NGr}(1,3,3)$.

Then we say that $N G r_{2}(1,3,3)$ is a seminonholonomic line complex $S N G r_{2}$ ($1,3,3 ; h$).

Three subclasses of $N G r_{2}(1,3,3)$ are examined: The line complexes $S N G r_{2}$ $(1,3,3 ;\{\chi\}), S N G r_{2}(1,3,3 ;\{b\})$ and $S N G r_{2}(1,3,3 ;\{a\})$ according to the conditions (I), (II) and (III) respectively.

The line complexes $\operatorname{SNGr}_{2}(1,3,3 ;\{x\})$ is determined by the differential equation.

$$
\begin{equation*}
\omega_{1}^{3}=\chi \omega_{2}^{4} \tag{4.1}
\end{equation*}
$$

and the associated exterior quadratic equation. This is an involutive equation, the nonuniqueness of its solutions being characterized by one arbitrary function of one argument.

Since the normal correspondences $K: A_{1} \longleftrightarrow \Sigma\left(A_{1}\right): x^{3}=0, K: A_{2} \longleftrightarrow \Sigma\left(A_{2}\right)$: $x^{4}=0$, are established for the complex (4.1), the points A_{1}, A_{2} are called the centres of the ray $l[10]$. This gives a geometric interpretation of the subobject $h=\{\chi\} \subset \theta, \chi$ is called the curvature of the line complex (4.1). Since the equation $\omega_{2}^{4}=0$, is complete integrable with respect to the line complex (4.1), it is easy to see that, this equation defines a holonomic line congruence coincident with the linear line congruence (3.5).

LEMMA 4.1. The line complex (4.1) admits a stratification into one-parameter families of hyperbolic linear line congruences (3.5).

The line complexes $\operatorname{SNGr}_{2}(1,3,3 ;\{b\})$ is defined by the involutive system of differential equation

$$
\left.\begin{array}{c}
\omega_{1}^{3}=b \omega_{1}^{4} \tag{4.2}\\
\left\{d b+2 b \omega_{3}^{3}\right\} \wedge \omega_{1}^{4}=0
\end{array}\right]
$$

The range of existence of such line complex comprises one arbitrary function :of one argument. The first fundamental differential-geometric subobject $h=\{b\} \subset \theta$ is established by the fixed correspondence

$$
K: M(t)=A_{1}+t A_{2} \longleftrightarrow \Sigma(M(t)): b x^{3}+x^{4}=0
$$

As the point M ranges over the ray l, the plane $\Sigma(M)$ is fixed, i. e., the cone of rays of the line complex (4.2), passing through M is degenerate into a cylinderical surface.

The system of complete integrable Pfaffian equations

$$
\begin{equation*}
\omega_{1}^{3}=0, \quad \omega_{1}^{4}=0 \tag{4.3}
\end{equation*}
$$

determines a parabolic holonomic line congruence \{with focal surface degenerate into the point $\left.A_{1}\right\}$ belonges to the line complex (4.2).

LEMMA 4.2. The line complex (4.2) admits a fibration into one-parameter families of parabolic line congruences (4.3).

The line complexes $\operatorname{SNGr}_{2}(1,3,3 ;\{a\})$ is characterized by the integrable system of equations

$$
\left.\begin{array}{c}
\omega_{1}^{3}=a \omega_{2}^{3} \tag{4.4}\\
\left\{d a-2 a \omega_{1}^{1}\right\} \wedge \omega_{2}^{3}=0
\end{array}\right]
$$

This system exists within one arbitrary function of one argument. The geometric interpretation of the subobject $h=\{a\} \subset \theta$ follows from the fixed correspondence $K: M(t)=A_{1}+t A_{2}, \quad a+t \neq 0 \longleftrightarrow \Sigma(M(t)) x^{4}=0$. The complete integrable Pfaffian system of equations

$$
\begin{equation*}
\omega_{1}^{3}=0, \quad \omega_{2}^{3}=0, \quad \omega_{1}^{4}=0 \tag{4.5}
\end{equation*}
$$

determines a ruled surface which is called the integral ruled surface of the line complex (4.4). This ruled surface degenerate into a pencil of lines with centre at A_{1} in the fixed plane $A_{1} A_{2} A_{4}$.

LEMMA 4.3. The line complex (4.4) can be represented as the set of twoparameter families of the penciles of straight lines (4.5).

Faculty of Science
Assiut Univ.
Assiut, Egypt

REFERENCES

[1] Masanov, V.I., Plastinina, V.D. Ruled surfaces in a space with ruled absolute, Trudy Irkutsk, Gos. Univ. 66(1969), 121-127.
[2] Laptev, G.F. Differential geometry of immersed manifolds group-theoretic method of differential-geometric investigations, Proc. Moscow. Math. Soc., Vol.2, Moscow (1953), 275-382.
[3] Finkov, S.P. Cartan's methods of exterior forms and their applications in differential geometry, Moscow, (1948).
[4] Wladyslaw, S., Exterior forms and their applications, Warsaw, 1970.
[5] Pekarskiene, A.Yu., Some problems in the geometry of a semiholonomic manifold of quadratic elements, Litovskii Matematicheskii, sbornik, Vol.17, No.4, (1977), 177-186.
[6] Navickis, K., The nonholonomic complex $\operatorname{NGr}(l, r, 2(n-2))$., Litovskii Matematicheskii Sbornik, Vol.17, No.1, (1977), 151-164.
[7] Poromar'ov, V.G., A classification of complexes in P_{3} that is based on the mobility of the canonical frame, Dopovidiakad, Nauk Ukrain RSR Ser. A (1972), 630-633, 670.
[8] Hlavaty. V., Differential line geometry, Groningeen Nordhoff, (1953).
[9] Borovec, G. J., Parametric equations of biaxially central complexes, Visnik, Kiiv. Univ. Mat. No. 17 (1975), 96-104, 180.
[10] Kovancov, N.I., Theory of complexes, Kiev, (1963).

