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LINE COMPLEXES IMMERSED IN A PROJECTIVE SPACE
WITH RULED ABSOLUTE
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1. Introduction

We consider an three-dimensional projective space P, referred to a moving
frame {A;} of four linearly independent analytic points Al' Az' As’ A; An
infinitesimal displacement of such a frame is determined by the equations,

dA;=wlA, G, 7, X=1, -, 4), (LD
where the one-forms wf (Pfaff’s differential forms) are invariant one-forms of
the projective group PG(3, ) whose structural equations have the form

D wizwawi (.2
We consider the gecmetry telonging to a subgroup H? of the group PG(3, R),
the transformations in the subgroup H‘:f do not move a ruled surface ¢. In [1],
it was shown that in a partially canonical moving frame {4;, the ruled surface
(absolute) ¢ is determined by the equation
A - =0 (1.3)
where the points A, A, A, A, are located on ¢ and (4, 4, A4, Ap=1. The

conditions of the stationary subgroup Hf of the projective grour, PG(3, i) are

2 1 3 2 4 3 1
W, =w,=0, w, =wf=0. wo,—w,=0, w,—w,=0

1~ % 47 %3 3 2 d (1.4)
b oBon ol ha sl Bl o8 4 o e
Wy —w;=0, w;—w,=0, w+w,=0, wy+w,=0]

From (1,1) and (1.4) it follows that, there exist two families of generators
@, ={A4,4; A4 and @,= {4 A3 A,A]) of the absolute o.

The set of all lines ii: the space P, is called the Grassman manifold Gr(1,3).
It is well known dim Gr(1,3)=4. A smooth 7-dimensiona! submanifold will ke
denoted by Gr(l, 3, ) (1<<r<<4).

DEFINITION 1.1. A three-dimensional {two-dimensional] submanifold of the
Grassman manifold Gr(1,3) is called a line complex Gr(1,3,3) f{aline congruence
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Gr(1,3,2)] immersed in Py,
2.Line complexes embedded in P; with ruled absolute

Let the points A}, 4, be located on a moving straight line / of a line complex
Gr(1,3,3). Then the invariance condition of / under an infinitesimal transforma-
tions of the subgroup H? is of the form

;=0 (p=1,2; a=3,4).

Hence one-forms w: are the main forms of the Grassman manifold Gr(1, 3).
Thus, in such a frame the differential equation of a line complex Gr(l, 3, 3)
have the form
w‘?za wg—}-b cuf—!— Xw; @1
in the first-order contact element of the generating element / of this complex.
Expanding the exterior quadratic equations corresponding to (2. 1) by Cartan’s
lemma, we get that the equations for the infinitesimal variations of the quantities

a,b,% when the first-order parameters are fixed, are as follows

(@a 06 an) =M@z )T @2
2a 0

where M=|0 —2b|, T denotes matrix
2% -2x

transposition, J is the symbol for differentiation with respect to the second
order parameters and :z,.j =w‘.’-(5).

The system of quantities #= {a, b, %} forms the first fundamental differential-
geometric object of the manifold G,(1,3,3) [5].

Therein, we give a geometric interpretation of the geometric object f. Since
the lin /=A,A, describes the line complex (2.1), we have the normal corres
pondence

K:N@®O=A+tA—ZN®) : 5= 25'=0,
where
A= +a)/(X-bt) (2.3

We thus obtain a projective mapping of the points of the line 7 onto the sheaf
of planes % —72'=0, This mapping associates the invariant point N,=54,+%A4,
with the plane #'=0. The point N, together with N,=bA;-%A, harmonically
separates the pair of points A; and A,. If we put ¢=0 or f=co, then the
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projective mapping (2.3) will determine two planes

15 - axt=0 2.9

b+ =0 (2.5)
from the sheaf of planes £ —2x*=0, These two planes correspond to the points
A, and A, From (2.2), we get

F/B)=201/b) 75, 3Ca/0)=2(a/%) = (2.6)

since equations (2.6) are of form analogous to the equation 52'—‘2?@.':3, which
follows from the stationarity of any plane of the sheaf xs—-}txq:o, we conclude

that the invariant planes (2.4) and (2.5) belong to the sheaf 2 -2xt=a.

DEFINITION 2.1. [6] A Grassman manifold Gr(1,3) with a field of correspond-
ence K is called a nonholonomic complex NGr (1,3,3) which determined by
(2.1,

Generally, the matrix M has rank equal to two. For the general class of
line complexes NGr(1,3,3) and from (2.2) we have
oX=X(bda+adb)/(ab),
i.e., we can take X=ab. This class of line complexes is defined by the system
of linear differential equation
w‘:’—a wg:b(wf-i—aw?_,) 3.7
and the associated exterior quadratic equations
1 3 4 4 4
da— 2awl=y1(m2 +b w2)+ ,uz(wl+cz coz)
3 3 4 4 1
db+2bwy= ,uz(cuzﬂb w2>+ ya(leracoz)
where g, p,, p, are the invariants in the 2rd-order contact element. This is an

involutive system, the nonuniqueness of its solution being characterized by one
function of two arguments. Hence we have the following lemma.

LEMMA 2.1. The range of existence of a line complex NGr(1,3,3) embedded in
P, with ruled absolute comprises one arbitrary function of two argumenis.

We state the results of our study of the geometry of two special classes of
line complexes of the above type in the following sections [7].
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3. Class of the holonomic line complexes HGr,(1,3,3)

In this section, we consider the special class of line complexes NGr{1,3,3) in
which the rank of the matrix M equal to zero, i.e., a=6=%=0, We denote
the resulting manifold by NGr,(1,3,3) {the lower index indicates the number of
coefficients here which are equai to zero in equation (2,1)]). Since the geometric
object & is empty and the normal correspondence is degencrate, the line complex
NGry(1,3,3) become a holonomic line complex HGr,(1,3,3).

The line complex HGry(1,3,3) is defined by the Pfaffian equation

wi=0 (3.1
This is an involutive equation, the uniqueness of its solution heing characterized
by one arbitrary constant.
From (3.1), (1.1) and (1.4), it is easy to see that the generator AAED, is
fixed and A, moves on the absolute ¢. This complex consists of all bundles of
lines with vertices on ¢ and A4; A, as a layer.

Analogous to the above investigation, we have three classes of line complexes
HGry(1,3,3) defined as follows:

The complete integrable Pfaffian equation

=0, (3.2)

determines a line complex. This line complex constructed geometrically as the
set of all bundles of lines with vertices on the absolute ¢ and 4,4:€0, as a
layer.

The involutive equation

=0, (3.3)

characterizes a line complex which consists of the family of all bundles of lines
with vertices on the absolute ¢ and A,4,&9, as a layer.

The differential equation
w3=0; Da=0, 3.4

defines a line complex., This line complex represented as the set of all bundles
with layer 4,4,E0, and vertices on the absolute ¢. From the foregoing results,

we have the following lemmas.

LEMMA 3.1. The intersection of the line complexes HGry(1,3,3) (3.1), (3.3)
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determines a hyperbolic linear congruences [8].
w.=0, wy=0, (3.5)
with two directrices belonging to the family @,.

LEMMA 3.2. The set of lines common to the line complexes HGr(1,3,3) (3.2).
(3.4), that is, the sef of lines satisfy the integrable system of equations.
mf:O. cog:O, (3.6)
determines @ hyperbolic linear congruence wilh {wo directrices belonging lo lhe
family D,

Therein, we give the parametric equations of one class of HGry(1,3,3) [9].
Say the class of line complexes (3.1). One way of obtaining an integral-free
representation of such complexes is the following., We take a generator / of the
ruled absolute ¢, for each point on the absolute ¢ draw a bundle of lines with.
! as a layer. All these bundles construct the class of line complexes (3.1).
Using this representation, we shall find the equations of the complexes (3.1) in
Pliicker coordinates as follows: Consider two points P;(4,1,1,4), Py(1,4,1/2, 7.2)-
on the generator 7 of the absolute ¢. Also any arbitrary point on ¢ is Q(1, v,
ug. 1/u). The Pliicker coordinates of the line PQ which is a ray of the line
complex [P=P +tP, is a point on /| are

PP=y(a+H-A+a), PP=Q+00 -1/
PU=Q+/w=20+2D, PP=y2(1+20)—v(+1/) @D
PH=+)U/w-v2), PH=(+0)/(w) - 271+
These equations depends on three parameters (4, ¢, v), they represent the
parametric equations of the constructed line complex (3.1).

4. Class of the seminonholonomic line complexes SNGr,(1,3,3;: k)

We consider the special class of line complexes NGr(l,3,3) in which the rank
of the matrix M equal to one. This class is classified in three separate
subclasses. The matrix M has rank equal to one if and only if one of the
following conditions

(1) @=b=0, (I) e=x=0, (Il) b=%=0, is satisfied. We denote by NGr,
(1,8,3) the class of line complexes under investigation.

DEFINITION 4.1. [5] Let a field of a differential-geometric object & having the
same structure as the subobject AC@ be given on a line complex NGr(1,3,3).
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Then we say that NGr,(1,3,3) is a seminonholonomic line complex SNGr,
1 8. 5 %,

Three subclasses of NG7,(1,3,3) are examined: The line complexes SNG7,
(1.3.3; {x}), SNGr,(1, 3 3: {b}) and SNGr,(l 3, 3; le}) according to the
conditions (1), (I) and (1) respectively.

The line complexes SNG:’E(L 3, 3; {x}) is determined by the differential

equation,

a)"f:Xwg (4.1)
and the associated exterior quadratic equation. This is an involutive equation,
the nonuniqueness of its solutions heing characterized by one arbitrary function
-of one argument.

Since the normal correspondences K : A «—X(4,) :x3=0, K da—I(dy) :
xd‘:(}, are established for the complex (4.1), the points 4, A, are called the
«<centres of the ray /[10]. This gives a geometric interpretation of the subobject
h={{}C0, % is called the curvature of the line complex (4.1). Since the equation
wg=0, is complete integrable with respect to the line complex (4.1), it is easy
to see that, this equation defines a holonomic line congruence coincident with
the linear line congruence (3.5).

LEMMA 4.1, The line complex (4.1) admits a stralification into one-parameter
Samilies of hyperbolic linear line congruences (3.5).

The line complexes SNG7,(1,3,3; {8]) is defined by the involutive system of
differential equation
m‘?:b cofl1 1
o 4.2)
(db+ 2B A 0y =0 J
The range of existence of such line complex comprises one arbitrary function
:of one argument. The first fundamental differential-geometric subobject k= (b} C8

is established by the fixed correspondence
K: M®O=A4+tA,—ZM©®) : 5>+ =0.
As the point M ranges over the ray /, the plane (M) is fixed, i.e., the cone
of rays of the line complex (4.2), passing through M is degenerate into a
cylinderical surface. '
The system of complete integrable Pfaffian equations
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w=0, wy=0 4.3
determines a parabolic holonomic line congruence {with focal surface degenerate
into the point A4,} belonges to the line complex (4.2).

LEMMA 4.2, The line complex (4. 2) admits a fibration into one-parameler
Ffamilies of parabolic line congruences (4.3).

The line complexes SNGr,(1, 3, 3; [(a]) is characterized by the integrable
system of equations
3 3
w; =aw,
( n 3 (4.4)
la’a - 2aculj Aw,=0
This system exists within one arbitrary function of one argument. The
geometric interpretation of the subobject k= {a}C0 follows from the fixed
correspondence K : M(#)=A,+iA, a-l-t#()'—'E(M(t))xd:O. The complete
integrable Pfaffian system of equations
@i=0, wy=0, w,=0 (4.5)
determines a ruled surface which is called the infegral ruled surface of the line

complex (4.4). This ruled surface degenerate into a pencil of lines with centre
at A, in the fixed plane 44,4,

LEMMA 4.3. The line complex (4.4) can be represented as the s¢t of two-
parameter families of the penciles of straight lines (4.5).
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