Kyungpook Math. J. Volume 22, Number 2 December, 1982

ON SPACES NOWHERE LOCALLY COMPACT

By Norman Levine

1. Introduction

DEFINITION 1.1. A space (X, \mathcal{T}) will be termed nowhere locally compact (written henceforth as *nlc*) iff $IntK = \phi$ for all compact sets K, Int denoting the interior operator.

We begin with a few examples of nlc spaces.

EXAMPLE 1.2. (*H*, *d*) where *H* consists of all infinite sequences of reals (x_1, x_2, \ldots) for which $\Sigma x_i^2 < \infty$ and $d(x, y) = (\Sigma |x_i - y_i|^2)^{1/2}$.

EXAMPLE 1.3. (X, \mathcal{T}) where X is uncountable and \mathcal{T} is the cocountable topology. (The only compact sets in X are finite sets.)

EXAMPLE 1.4. (X, \mathcal{T}) where X is the set of rational numbers and \mathcal{T} is the usual topology.

EXAMPLE 1.5. (X, \mathcal{T}) where X is the set of reals and \mathcal{T} is the half open interval topology.

EXAMPLE 1.6. $X\{(X_{\alpha}, \mathscr{T}_{\alpha}) : \alpha \in A\}$ where $(X_{\alpha}, \mathscr{T}_{\alpha})$ is not compact for an infinite number of α . (See Theorem 16, page 145 in [1].)

 \mathcal{C} will denote the complement operator and *c* will denote the closure operator. If (X, \mathcal{F}) is a *nlc* space, we will say that \mathcal{F} is a *nlc* topology or simply that \mathcal{F} is *nlc*.

2. Subspaces of *nlc* spaces

THEOREM 2.1. Let (X, \mathcal{F}) be a nlc space and O an nonempty open subset of X. Then $(O, O \cap \mathcal{F})$ is nlc.

THEOREM 2.2. Let (Y, \mathcal{U}) be a dense subspace of a Hausdorff nlc space (X, \mathcal{F}) . Then (Y, \mathcal{U}) is nlc.

PROOF. Suppose $\phi \neq O \cap Y \subseteq K \subseteq Y$ where $O \in \mathscr{F}$ and K is compact. Then $\phi \neq O \subseteq c_X(O) = c_X(O \cap Y) = c_X(K) = K$. Thus $\phi \neq O \subseteq K \subseteq X$, and X is not *nlc*, a contradiction.

Norman Levine

THEOREM 2.3. Suppose $Y \subseteq X$ and (X, \mathcal{F}) is a nlc space. If $\mathcal{C}Y$ is compact, then $(Y, Y \cap \mathcal{F})$ in nlc.

PROOF. Suppose $\phi \neq O \cap Y \subseteq K \subseteq Y$ where $O \in \mathscr{F}$ and K is compact. Then $\phi \neq O \subseteq K \cup \mathscr{C}Y \subseteq X$. Then X is not *nlc*, a contradiction.

REMARK 2.4. A closed subset of a *nlc* space need not be *nlc*, e.g., a singleton set in the space of rationals is not *nlc*.

3. Product spaces

THEOREM 3.1. Let $(X, \mathcal{F}) = X\{(X_{\alpha}, \mathcal{F}_{\alpha}) : \alpha \in \Delta\}$ where \mathcal{F} is the product topology or the box topology. Suppose $(X_{\beta}, \mathcal{F}_{\beta})$ is nlc for some $\beta \in \Delta$. Then (X, \mathcal{F}) is nlc.

PROOF. Suppose on the contrary that $\phi \neq O \subseteq K \subseteq X$ where $O \in \mathscr{T}$ and K is compact. Then $\phi \neq P_{\beta}[O] \subseteq P_{\beta}[K] \subseteq X_{\beta}$. Then $P_{\beta}[O]$ is open and $P_{\beta}[K]$ is compact, P_{β} denoting the β -projection. Thus X_{β} is not *nlc*, a contradiction.

The converse of Theorem 3.1 is false as seen in

EXAMPLE 3.2. Let $(X_n, \mathcal{T}_n) = (R, \mathcal{U})$ for $n \ge 1$ where (R, \mathcal{U}) is the space of reals with the usual topology. If $(X, \mathcal{T}) = X\{(X_n, \mathcal{T}_n) : n \ge 1\}$, then (X, \mathcal{T}) is *nlc* by Example 1.5. However (X_n, \mathcal{T}_n) is *nlc* for no integer *n*.

4. Enlarging nlc topologies

THEOREM 4.1. Let (X, \mathcal{F}) be nlc and let \mathcal{U} be the cofinite topology on X. Then $\sup\{\mathcal{F}, \mathcal{U}\}$ is a nlc topology for X.

PROOF. Suppose $\phi \neq A \subseteq K \subseteq X$ where A is in $\sup \{\mathcal{F}, \mathcal{U}\}$ and K is compact relative to $\sup \{\mathcal{F}, \mathcal{U}\}$. Then there exists a $U \in \mathcal{U}$ and an $O \in \mathcal{F}$ such that $\phi \neq O \cap U \subseteq K \subseteq X$. It follows that $\phi \neq O \subseteq K \cup \mathcal{C}U \subseteq X$. But $K \cup \mathcal{C}U$ is \mathcal{F} -compact and thus (X, \mathcal{F}) is not *nlc*, a contradiction.

THEOREM 4.2. Let (X, \mathcal{F}) be nlc and $K \subseteq X$, K compact. If $\mathcal{U} = \{\phi, \mathcal{C}K, X\}$, then $\sup\{\mathcal{F}, \mathcal{U}\}$ is a nlc topology for X.

PROOF. Modify the proof of Theorem 4.1.

THEOREM 4.3. Let (X, \mathcal{F}) be nlc and c(A) = X. If $\mathcal{U} = \{\phi, A, X\}$ and every compact set in (X, \mathcal{F}) is closed, then $\sup\{\mathcal{F}, \mathcal{U}\}$ is a nlc topology for X.

PROOF. Let $\phi \neq D \subseteq K \subseteq X$ where D is in $sup\{\mathcal{T}, \mathcal{U}\}$ and K is compact relative

168

to $\sup\{\mathcal{F}, \mathcal{U}\}$. Then there exist an $O \in \mathcal{F}$ such that $\phi \neq O \cap A \subseteq D \subseteq K \subseteq X$. Then $\phi \neq O \subseteq c(O) = c(O \cap A) \subseteq c(K) = K$. Thus $\phi \neq O \subseteq K \subseteq X$ and (X, \mathcal{F}) is not *nlc*, a contradiction.

THEOREM 4.4. Let (X, \mathcal{T}) be nlc and $O^* \subseteq A \subseteq c(O^*)$ for some $O^* \in \mathcal{T}$. Then $\sup \{\mathcal{T}, \{\phi, A, X\}\}$ is nlc.

PROOF. Let $\phi \neq U \subseteq K \subseteq X$ where $U \in \sup \{\mathcal{T}, \{\phi, A, X\}\}$ and K is compact relative to $\sup \{\mathcal{T}, \{\phi, A, X\}\}$. We may assume that $\phi \neq O \cap A \subseteq U$ for some $O \in \mathcal{T}$. It follows that $\phi \neq O \cap O^* \subseteq K \subseteq X$ and thus (X, \mathcal{T}) is not *nlc*, a contradiction.

5. When is a topology contained in a nlc topology?

THEOREM 5.1. Let (X, \mathcal{F}) be an arbitrary Hausdorff topological space. There exists a topology \mathcal{U} for X such that $\mathcal{F} \subseteq \mathcal{U}, \mathcal{U}$ is nlc iff $\phi \neq 0 \in \mathcal{F}$ implies that O is infinite.

PROOF. If there existed a nonempty finite O in \mathscr{T} , then clearly \mathscr{U} would not be *nlc* for any $\mathscr{U} \supseteq \mathscr{T}$.

Let us assume then that $\phi \neq 0 \in \mathcal{F}$ implies that O is infinite. Theorem 5.1 will follow from the following lemmas.

LEMMA 5.2. Let (X, \mathcal{T}) be a space in which every nonempty open set is infinite. Then there exists a topology \mathcal{U}^* for X such that (1) $\mathcal{T} \subseteq \mathcal{U}^*$, (2) all nonempty sets in \mathcal{U}^* are infinite and (3) \mathcal{U}^* is maximal relative to (1) and (2).

The proof is an easy exercise using Zorn's lemma and will be omitted.

LEMMA 5.3. Let (X, \mathcal{T}) be a space in which every nonempty open set is infinite and suppose \mathcal{T} is maximal relative to this property. If $A \subseteq X$ and $O^* \subseteq A \subseteq c(O^*)$ for some $O^* \in \mathcal{T}$, then $A \in \mathcal{T}$.

PROOF. Let $\mathscr{U} = \sup \{\mathscr{T}, \{\phi, A, X\}\}$. It suffices to show that if $\phi \neq U \in \mathscr{U}$, then U is infinite.

Let $x \in U$. Clearly we may assume that $O^* \neq \phi$. If $x \in O \subseteq U$ for some $O \in \mathscr{T}$ or if $x \in A \subseteq U$, then U is infinite. Assume then that $x \in O \cap A \subseteq U$ for some $O \in \mathscr{T}$. Then $x \in O \cap c(O^*)$ and hence $O \cap O^*$ is nonempty. But $O \cap O^* \subseteq O \cap A \subseteq U$ and thus U is infinite.

LEMMA 5.4. Let (X, \mathcal{T}) be an infinite Hausdorff space. There exist O_1 , O_2, \ldots, O_n, \ldots in \mathcal{T} such that $O_i \neq \phi$ for all i and $O_i \cap O_j = \phi$ when $i \neq j$.

PROOF. See Theorem 5.2.3 in [2].

LEMMA 5.5. Let (X, \mathcal{T}) be a space in which every nonempty open set is infinite and suppose \mathcal{T} is maximal relative to this property. Then (X, \mathcal{T}) is extremally disconnected.

PROOF. Let $O_1 \cap O_2 = \phi$, $O_i \in \mathscr{T}$. We assert that $c(O_1) \cap c(O_2) = \phi$. Suppose that $x \in c(O_1) \cap c(O_2)$. Then $O_1 \cup \{x\}$ and $O_2 \cup \{x\}$ are open by Lemma 5.3. It follows then that $\{x\}$ is in \mathscr{T} and $\{x\}$ is finite, a contradiction.

LEMMA 5.6. Let (X, \mathcal{T}) be a Hausdorff space in which every nonempty open set is infinite. Suppose \mathcal{T} is maximal relative to this property. Then (X, \mathcal{T}) is nlc.

PROOF. Deny. Then there exists an open set $O \in \mathscr{T}$ and a compact set K such that $\phi \neq O \subseteq K \subseteq X$. Since O is infinite and Hausdorff (as a subspace), there exist disjoint nonempty open set O_i for which $O_i \subseteq O$ for $i \geq 1$ by Lemma 5.4. Let $U = \bigcup \{O_i : i \geq 1\}$. Then $c(U) - U \subseteq K$ and c(U) - U is compact. Then $\{x\} \cup U$ is open for all $x \in c(U) - U$ by Lemma 5.3. It follows then that c(U) - U is finite. Let $U_1 = \bigcup \{O_{2i} : i \geq 1\}$ and $U_2 = \bigcup \{O_{2i-1} : i \geq 1\}$. Then $c(U) - U = (c(U_1) - U_1) \cup (c(U_2) - U_2)$ and $(c(U_1) - U_1) \cap (c(U_2) - U_2) \subseteq c(U_1) \cap c(U_2) = \phi$ by Lemma 5.5. Thus $c(U_1) - U_1$ or $c(U_2) - U_2$ has fewer elements than c(U) - U. Continuing in this way we get a sequence O_{n_i} , O_{n_i} , ... for which $c(O_{n_1} \cup O_{n_2} \cup \ldots) = O_{n_1} \cup O_{n_2}$. U... But $c(O_{n_1} \cup \ldots) \subseteq K$ and hence $c(O_{n_1} \cup \ldots)$ is compact. But $\{O_{n_i} : i \geq 1\}$ is an open cover of $c(O_n \cup \ldots)$ with no finite subcover, a contradiction.

Theorem 5.1 now follows from Lemma 5.2 and Lemma 5.6.

6. Maximal nlc topologies

THEOREM 6.1. Let \mathcal{T}_{α} be a nlc topology for X for each $\alpha \in \mathcal{A}$. Suppose $\mathcal{T}_{\alpha} \subseteq \mathcal{T}_{\beta}$ or $\mathcal{T}_{\beta} \subseteq \mathcal{T}_{\alpha}$ for all α , β in \mathcal{A} . If $\mathcal{U} = \sup\{\mathcal{T}_{\alpha} : \alpha \in \mathcal{A}\}$, then \mathcal{U} is a nlc topology for X.

PROOF. Suppose $\phi \neq U \subseteq K \subseteq X$ where $U \in \mathcal{U}$ and K is compact relative to \mathcal{U} . There exists then an $\mathcal{O}_{\alpha} \in \mathcal{F}_{\alpha}$ for some α for which $\phi \neq \mathcal{O}_{\alpha} \subseteq U \subseteq K$. But K is \mathcal{F}_{α} compact and thus $(X, \mathcal{F}_{\alpha})$ is not *nlc*, a contradiction.

COROLLARY 6.2. Let (X, \mathcal{T}) be nlc. Then there exists a topology \mathcal{U} for X such that (1) $\mathcal{T} \subseteq \mathcal{U}$ (2) \mathcal{U} is nlc and (3) \mathcal{U} is maximal relative to (1) and (2).

170

PROOF. Use Zorn's lemma and Theorem 6.1.

COROLLARY 6.3. Let (X, \mathcal{T}) be a Hausdorff space in which every nonempty set is infinite. There exists then a topology \mathcal{U} for X such that (1) $\mathcal{T} \subseteq \mathcal{U}$ (2) \mathcal{U} is nlc and (3) \mathcal{U} is maximal relative to (1) and (2).

PROOF. This follows from Corollary 6.2 and Theorem 5.1.

DEFINITION 6.3. We will call a topology \mathscr{U} for X maximal nowhere locally compact (written henceforth as mnlc) if \mathscr{U} is nlc and $\mathscr{U} \subseteq \mathscr{W}$ implies $\mathscr{U} = \mathscr{W}$ where \mathscr{W} is nlc.

THEOREM 6.4. Let (X, \mathcal{T}) be a space and \mathcal{T} a mult topology. Then (X, \mathcal{T}) is a T_1 -space.

PROOF. This follows immediately from Theorem 4.1.

THEOREM 6.5. Let (X, \mathcal{F}) be a space in which \mathcal{F} is a mult topology. Then \mathcal{F} contains all of its semi-open sets, that is, if $O^* \subseteq A \subseteq c(O^*)$ where $O^* \in \mathcal{F}$, then $A \in \mathcal{F}$.

PROOF. This follows from Theorem 4.4.

EXAMPLE 6.6. The space of rationals with the usual topology is *nlc* but not *mnlc*. $\{r|0 \le r < 1, r \text{ rational}\}$ is semi-open in the rationals, but not open.

THEOREM 6.7. Let (X, \mathcal{F}) be a space in which \mathcal{F} is mulc. Then every compact set in X is closed.

PROOF. This follows immediately from Theorem 4.2.

THEOREM 6.8. Let (X, \mathcal{T}) be a space in which \mathcal{T} is a mult topology. Then \mathcal{T} contains all of the dense sets in X.

PROOF. This follows from Theorem 6.7 and Theorem 4.3.

THEOREM 6.9. Let (X, \mathcal{T}) be a space in which \mathcal{T} is a mult topology. Then (X, \mathcal{T}) is extremally disconnected.

PROOF. This follows immediately from Theorem 6.5.

THEOREM 6.10. Let (X, \mathcal{F}) be a space in which \mathcal{F} is a mulc topology. Then all compact sets are finite.

PROOF. Let $K \subseteq X$, K compact. Then K is closed and $\mathcal{CCK} = \phi$. Thus \mathcal{CK} is open and dense in X. By Theorem 6.5, it follows that $\{x\} \cup \mathcal{CK}$ is open for all

Norman Levine

x in X. But $\{\{x\} \cup \mathcal{C}K : x \in K\}$ is an open cover of K and it follows then that K is finite.

7. Additivity theorems

THEOREM 7.1. Let (X, \mathcal{T}) be a space and $A_{\alpha} \subseteq X$ for all $\alpha \in A$. If $X = \bigcup \{A_{\alpha} : \alpha \in A\}$, A_{α} is closed for all α and $(A_{\alpha}, A_{\alpha} \cap \mathcal{T})$ is nlc, then (X, \mathcal{T}) is nlc.

PROOF. Suppose $\phi \neq O \subseteq K \subseteq X$ where $O \in \mathscr{F}$ and K is compact. Then there exists an $\alpha \in \mathcal{A}$ for which $\phi \neq A_{\alpha} \cap O \subseteq A_{\alpha} \cap K \subseteq A_{\alpha}$. Then $A_{\alpha} \cap K$ is compact and $(A_{\alpha}, A_{\alpha} \cap \mathscr{F})$ is not *nlc*, a contradiction.

THEOREM 7.2. Let (X, \mathcal{F}) be a space and $O_{\alpha} \in \mathcal{F}$ for all $\alpha \in \Delta$. Suppose $X = \bigcup \{O_{\alpha} : \alpha \in \Delta\}$ and $O_{\alpha} \subseteq O_{\beta}$ or $O_{\beta} \subseteq O_{\alpha}$ for all α , β in Δ . Then (X, \mathcal{F}) is nlc iff O_{α} is nlc for all $\alpha \in \Delta$.

PROOF. If X is *nlc*, then O_{α} is *nlc* by Theorem 2.1. Assume that O_{α} is *nlc* for all $\alpha \in \mathcal{A}$. Suppose $\phi \neq O \subseteq K \subseteq X$ where K is compact and $O \in \mathscr{F}$. Then $K \subseteq O_{\beta}$ for some β and $\phi \neq O \subseteq K \subseteq O_{\beta}$. Then O_{β} is not *nlc* a contradiction.

EXAMPLE 7.3. A union of two open *nlc* sets need not be *nlc*. Let (X, \mathscr{T}) be the space of rationals with the usual topology. Let D be the diadic rationals and E=X-D. Let $a\neq b$, $a\notin X$, $b\notin X$. Let $Y=X\cup \{a, b\}$ and let $\mathscr{U}=\mathscr{T}\cup \{\{a\}, U\} \cup U : O \in \mathscr{T}$ and $O \supseteq D \cup \{\{b\} \cup U : O \in \mathscr{T} \text{ and } O \supseteq E\}$. Then clearly \mathscr{U} is a topology for Y and (Y, \mathscr{U}) is compact and therefore not *nlc*. Let $U_1 = \{a\} \cup X$ and $U_2 = \{b\} \cup X$. U_1 and U_2 are open in (Y, \mathscr{U}) . We now show that U_1 is *nlc*. Suppose $\phi \neq U^* \subseteq K \subseteq U_1$ where $U^* \in U_1 \cap \mathscr{U}$ and K is compact.

CASE 1. a $\notin K$. Then $\phi \neq U^* \subseteq K \subseteq X$ and $U^* \in \mathscr{T}$, a contradiction.

CASE 2. $a \in K$. There exist rationals r < s for which $(r, s) \cap X \subseteq U^* \subseteq K$. Let $z \in (r, s)$, z irrational. Select $l_1 < l_2 < \ldots$ in $(r, s) \cap E$ so that $\lim l_i = z$ in the space of reals. If $F_i = \{l_i, l_{i+1}, \ldots\}$, then $\{F_i : i \ge 1\}$ is a family of closed sets in K with the finite intersection property. But $\bigcap \{F_i : i \ge 1\} = \phi$, a contradiction.

 U_2 can be shown to be *nlc* by a similar argument.

LEMMA 7.4. Let (X, \mathcal{T}) be a space and $X = A \cup B$. Suppose A and B are both nlc and $CA \subseteq O_1$, $CB \subseteq O_2$, $O_i \in \mathcal{T}$ and $O_1 \cap O_2 = \phi$. Then (X, \mathcal{T}) is nlc.

PROOF. Suppose $\phi \neq O \subseteq K \subseteq X$ where $O \in \mathscr{T}$ and K is compact.

CASE 1. $O \cap O_1 \neq \phi$. Then $\phi \neq O \cap O_1 \subseteq K \cap \mathcal{C}O_2 \subseteq B$. But $K \cap \mathcal{C}O_2$ is compact and thus B is not *nlc*, a contradiction.

CASE 2. $O \cap O_1 = \phi$. Then $\phi \neq O \subseteq K \cap \mathcal{C}O_1 \subseteq A$. But $K \cap \mathcal{C}O_1$ is compact and hence A is not *nlc*, a contradiction.

COROLLARY 7.5. Let (X, \mathcal{T}) be a normal space and let $X = O_1 \cup O_2$ where O_1 and O_2 are in \mathcal{T} . If O_1 and O_2 are nlc, then X is nlc.

PROOF. CO_1 and CO_2 are disjoint closed sets and hence can be separated by disjoint open sets.

THEOREM 7.6. Let (X, \mathcal{T}) be a Hausdorff space and let $X=U \cup V$ where U and V are open and nlc. Then X is nlc.

PROOF. Suppose $\phi \neq O \subseteq K \subseteq X$ where $O \in \mathscr{F}$ and K is compact. Now $\mathcal{C}U \cap \mathcal{C}V = \phi$ and thus $K \cap \mathcal{C}U$ and $K \cap \mathcal{C}V$ are disjoint compact sets in a Hausdorff space. There exist open sets O_1 and O_2 for which $K \cap \mathcal{C}V \subseteq O_1$ and $K \cap \mathcal{C}U \subseteq O_2$ and $O_1 \cap O_2 = \phi$. Now $O \cap O_1 \subseteq K \cap \mathcal{C}O_2 \subseteq K \cap U \subseteq U$ and $K \cap \mathcal{C}O_2$ is compact. Since U is *nlc*, it follows that $O \cap O_1 = \phi$. Thus $\phi \neq O \subseteq K \cap \mathcal{C}O_1 \subseteq V$ and V is not *nlc*, a contradiction.

COROLLARY 7.7. Let (X, \mathcal{T}) be a Hausdorff space and let $X = O_1 \cup \ldots \cup O_n$ where $O_i \in \mathcal{T}$ and O_i is nlc for each i, then X is nlc.

PROOF. Use the induction.

COROLLARY 7.8. Let (X, \mathcal{F}) be a Hausdorff space and let $X = \bigcup \{O_{\alpha} : \alpha \in A\}$ where $O_{\alpha} \in \mathcal{F}$ and O_{α} is nlc for all $\alpha \in A$. Then (X, \mathcal{F}) is nlc.

PROOF. If $\phi \neq O \subseteq K \subseteq X$ where $O \in \mathscr{F}$ and K is compact, then $\phi \neq O \subseteq K \subseteq O_{\alpha_1}$ $\bigcup \ldots \bigcup O_{\alpha_n}$ and $O_{\alpha_1} \bigcup \ldots \bigcup O_{\alpha_n}$ is not *nlc*, a contradiction.

THEOREM 7.9. Let (X, \mathcal{T}) be a regular space (Hausdorff not assumed) and suppose $X=0 \cup A$ where $0 \in \mathcal{T}$ and 0 and A are nlc. Then (X, \mathcal{T}) is nlc.

PROOF. Suppose $\phi \neq O^* \subseteq K \subseteq X$ where O^* is open and K is compact.

CASE 1. $O \cap O^* \neq \phi$. Since (X, \mathscr{T}) is regular, there exists an $O^* \in \mathscr{T}$ such that $\phi \neq O^* \subseteq c(O^*) \subseteq O \cap O^* \subseteq O^* \subseteq K$. Thus $c(O^*)$ is compact and $\phi \neq O^* \subseteq c(O^*) \subseteq O$ and O is not *nlc*, a contradiction.

CASE 2. $O \cap O^* = \phi$. Then $\phi \neq O^* \subseteq K \cap C \cap O \subseteq A$. But $K \cap C \cap O$ is compact and hence A is not *nlc*, a contradiction.

The Ohio State University U.S.A.

REFERENCES

John L. Kelley, General topology, American Book-Van Nostrand-Reinhold, 1955.
William J. Pervin, Foundations of general topology, Academic Press, 1964.