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ON SPACES NOWHERE LOCALLY COMPACT
By Norman Levine

1. Introduction

DEFINITION 1.1. A space (X, .5 ) will he termed mowhere locally compact
(written henceforth as wn/c) iff IntK=¢ for all compact sets K, Inf denoting
the interior operator.

We begin with a few examples of nlc spaces.
EXAMPLE 1.2. (H, d) where H consists of all infinite sequences of reals (x,,
X .+.) for which Z'x?(oo and d(x, y)=(£'!:cf—y'.12)l/2.

EXAMPLE 1.3. (X, .9) where X is uncountable and .9~ is the cocountable
topology. (The only compact sets in X are [inite sets.)

EXAMPLE 1.4, (X, .9 ) where X is the set of rational numbers and % is
the usual topology.

EXAMPLE 1.5. (X, 5 ) where X is the set of reals and % is the half open
interval topology.

EXAMPLE 1.6. X{(X, J ) :a€d} where (X, 5 ,) is not compact for an
infinite number of a. (See Theorem 16, page 145 in [1].)

& will denote the complement operator and ¢ will denote the closure operator.
If (X, 97) is a nlc space, we will say that J is a nlc topology or simply
that .7 is nlc.

2. Subspaces of nlc spaces

THEOREM 2.1. Let (X, 97) be a nlc space and O an nonempty open subset of
X. Then (0O, ONS") is nlc.

THEOREM 2.2, Let (¥, #) be a dense subspace of a Hausdorff nlc space
(X, 9). Then (Y, #) is wnlc.

PROOF. Suppose ¢=ONYCKCY where 0E5 and X is compact. Then ¢
0Ccy(0)=cy(ONY)=cy(K)=K. Thus ¢#0CKCX, and X is not nlc, a
contradiction. ;
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THEOREM 2.3. Suppose YCX and (X, 7) is a nic space. If €Y is conpact,
then (¥, YN.9 ) n #nlc.

PROOF. Suppose ¢p#0NYCKCY where OS5 and K is compact. Then
¢#O0CKUJEYCX. Then X is not nle, a contradiction.

REMARK 2.4. A closed subset of a #/¢ space need not be nlc, e.g., a singleton
set in the space of rationals is not #lc.

3. Product spaces

THEOREM 3.1. Let (X, J)=X{(X, J ) :a€dl where J is the producl
topology or the box topology. Suppose (Xz F~ ﬁ) is nlc for some SEA Then (X,
) is nlc.

PROOF. Suppose on the contrary that ¢20CKCX where 0£5 and K is com-
pact. Then ¢#Pﬁ [DICP KICX 5 Then P4[0] is open and P4[K] is compact,
Pg denoting the S-projection. Thus X 5 is not #le, a contradiction.

The converse of Theorem 3.1 is false as seen in

EXAMPLE 3.2. Let (X, J D=8, %) for n=1 where (R, %) is the space of
reals with the usual topology. If (X, J)=X{(X,, J,) :n=1}, then (X, )
is nlc by Example 1.5. However (X, 5 ,) is nic for no integer .

4. Enlarging nlec topologies

THEOREM 4.1, Let (X, 5) be nic and let % be the cofinite topology on X.
Then sup T, #} is a nlc topolegy for X.

PROOF. Suppose 0#ACKCX where A is in supl9, #Z} and K is compact
relative to sup{9, #}. Then there exists a UE# and an OE.9 such that
##0ONUCKCX. It follows that p#0CKUEUCX. But KUEU is .5 -compact
and thus (X, %) is not #lc, a contradiction.

THEOREM 4.2, Let (X, 5) be nlc and KCX, K compact. If #=1{p, CK,
X}, then supl5, Z) is a nlc topology for X.

PROOF. Modify the proof of Theorem 4. 1.

THEOREM 4.3. Let (X, 5) be nlc and c{A)=X. If #=1{p, A, X) and every
compact set in (X, 7 ) is closed, then sup{.7", %) is a nic topology for X.

PROOF. Let ¢#DCKCX where D is in sup{5, %] and K is compact relative
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to sup(s”, #Z}. Then there exist an OE5 such that ¢2ONACDCKCX.
Then 9£0Zc(@) =c(ONA)Cc(K)=K. Thus ¢9#0CKCX and (X, .7) is not
nle, a contradiction.

THEOREM 4.4, Let (X, 97) be nlc and O*CACc(O%) for some O*<&5 . Then
supld, 19, A, X} is ulc.

PROOF. Let ¢d2UCKCX where USsupl{5, {$, A, X}} and K is compact
relative to supl?, [0, A, Xl). We may assume that $#ONACU for some
0=5. It follows that ¢==0ONO*CKCX and thus (X, 5 ) is not zle, a
contradiction.

5. When is a topology contained in a nlc topology ?

THEOREM 5.1. Let (X, .5 ) be an arbitrary Hausdorff topological space. There
exisis a topology 7% for X such that T C¥, % is nlciff 0A0ET implies that
O is infinite.

PROOF. If there existed a nonempty finite O in %, then clearly % would
not be nlc for any 2.7 .

Let us assume then that ¢£0&7 implies that O is infinite. Theorem 5.1
will follow from the following lemmas.

LEMMA 5.2, Let (X, 97) be a space in which every nonemply open set is
infinite. Then there exists a topology #* for X such that (1) T C#%*, (2) all
nonempty sets in Z* are infinite and (3) #* is maximal relative to (1) and (2).

The proof is an easy exercise using Zorn's lemma and will be omitted.

LEMMA 5.3, Let (X, J) be a space in which every nomemply open set is
infinite and suppose J is maximal relative to this properiy. If ACX and OFC
ACc(O%) for some O*€.T, then AEST .

PROOF. Let Z =sup{7, {9, A, X}}. It suffices to show that if ¢=UEZ,
then U is infinite.

Let x€U. Clearly we may assume that O*g., If x€0CU for some OEF or
if xACU, then U is infinite. Assume then that xE0NACU for some 0E.9 .
Then x&0Ne¢(0*) and hence ONO¥ is nonempty. But ONO*CONACU and thus
U is infinite.

LEMMA 5.4, Let (X, 97) be an infinite Hausdorff space. There exist 0y
Oy vovs Opee in T~ such that 0749 for all { and 0,N0;=0 when i7j.
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PROOF. See Theorem 5.2.3 in [2].

LEMMA 5.5, Let (X, .7) be a space in which every nonemply opeun set is infinite
and suppose 7 is maximal relative to this properiy. Then (X, 5) is extremally
disconnecled.

PROOF. lLet OlﬂOZ:g;'l, 0,&5. We assert that c(Ol)ﬂc(Oz)zgé. Suppose that
xEc(0)Ne(0y). Then O,U{x] and O,U {x} are open by Lemma 5.3. It follows
then that {x} is in % and {x} is finite, a contradiction.

LEMMA 5.6, Let (X, ) be a Hausdorff space in which every nonemfty open
set is infinite. Suppose 5 s maximal relative to this property, Then (X, 5 )
is nic,

PROOF. Deny. Then there exists an open set O&.9 and a compact set K such
that ¢#0CKCX. Since O is infinite and Hausdorff (as a subspace), there exist
disjoint nonempty open set O, for which 0,CC for 2=1 by Lemma 5.4. Let
U=UI0, :i=1}. Then c(U)—UCK and ¢(U)-U is compact. Then {(x}UU is
open for all ¥&c(U)—U by Lemma 5.3. It follows then that ¢(U)-U is finite.
Let U;=U(0,,:i=1) and U,=U(0,_;:¢=1], Then () -U=(UD-UDU
(eU,)-U,) and (cUD-UPNWUN-U)=eW INe(U,)=¢ by Lemma 5.5.
Thus e(U/)-U, or ¢(U,)—U, has fewer elements than ¢(U)~-U. Continuing in
ey for which c(OmUOnsU...):Oﬂ]UOm
T —C T c(On! U... )=X and hence C(sz.,U"') is compact, But {0 {:521} is

an open cover of ¢(0, ... with no finite subcover, a contradiction.
T

this way we get a sequence O,, O

n

Theorem 5.1 now follows from Lemma 5.2 and Lemma 5. 6.
6. Maximal nle topologies

THEOREM 6.1. Let 5, be a unlc topology for X for each o«€4d. Suppose 7,
;va—ﬁ i 'j?_,sg—fa for all o, 8in 4 If % =supl5 . a€dl, then % is a nlc
topology for X.

PROOF. Suppose ¢#UCKCX where UE% and K is compact relative to 7.
There exists then an O0,&5 , for some o for which ¢+#0,CUCK. But K is

7, compact and thus (X, 57 ,) is not #lc, a contradiction.

COROLLARY 6.2. Let (X, 9) be nle. Then there exists a lopology ¥ for X
such that (1) 9 C% (2) % is nic and (3) % is maximal relative to (1) and (2).
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PROOF. Usz Zorn’s lemma and Theorem 6. 1.

CORGLLARY 6.3. Let (X, 77) be a Hausdorff space in which every nonempty
sei iz infinite. There exists then a topology 7% for X suck that (1) T C# (2) ¥
is ale and (3} #Z is maximal relative to (1) and (2).

PROOF. This follows from Corollary 6.2 and Theorem 5.1,

DEFINITION 6.3. We will call a topology # for X maximal nowhere iocally
compact (written henceforth as mmlc) if # is nlc and ZC¥  implies Z =%
where #” is nic.

THEOREM 6.4, Let (X, 9 ) be a space and .7 a mnlc topology. Then (X,
) is a T~space.

PROOF. This follows immediately from Theorem 4. 1.

THEOREM 6.5. Let (X, .77) be a space in which 5~ is a mnlc topology. Then

o

G conlains all of iis semi-open sets, that is, if O*CACc(0%) where O*E95,
then AST .

PROOF. This follows from Theorem 4.4.

EXAMPLE 6.6, The space of rationals with the usual topology is #/c but not
mnle. {r|0=r<1, r rational} is semi-open in the rationals, but not open,

THEOREM 6.7. Let (X, 97) be a space in whick 7 is malc. Then every compact
set in X is closed.

PROOF. This follows immediately from Theorem 4. 2.

THEOREM 6.8. Let (X, .9) be a space in which .5 is a mulc topology. Then
G contains all of the dense sets in X.

PROOF. This follows from Theorem 6.7 and Theorem 4.3.

THECREM 6.9. Let (X, 57) be a space in which 5 is a mnlc topology. Then
(X, J7) is extremally disconnected.

PROOF. This follows immediately from Theorem 6. 5.

THEOREM 6.10, Let (X, 9) be a space in which 9 is a mnlc topology. Then
all compact sets are finite.

PROOF. Let KCX, K compact. Then K is closed and €c€K =¢. Thus €K is
open and dense in X. By Theorem 6.5, it follows that {x} UZK is open for all



172 Norman Levine

x in X. But {{x) UZK : x€K] is an open cover of K and it follows then that
K is finite.

7. Additivity theorems
THEOREM 7.1. Le! (X, 7 ) bea space and A ,CX for all a€4. If X=U{4,:

o=

a=d), A, s closed for all o and (A, Aaﬂf) is nle, then (X, 9) is nlec.

PROOF. Suppose ¢#0CKCX where 0€5 and K is compact. Then there
exists an a€d for which ¢4 NOCA NKCA,. Then A NK is compact and
(4, A,NF") is not nle, a contradiction,

THEOREM 7.2, Let (X, J) be a space and O, &5 for all a€EA. Suppose
X=UI0,: a4} and O‘IQOE or oﬁgoa for all o, B in A Then (X, 5) isunlc
iff O, is nlc for all a€A4

PROOF. If X is mlc, then O, is nlc by Theorem 2.1, Assume that 0, is nlc
for all &4, Suppose ¢2OCKCTX where K is compact and OS5 . Then
KCO; for some § and ¢#0SKCO0; Then O is not nic a contradiction.

EXAMPLE 7.3. A union of two open nlc sets need not be #nle. Let (X, 9)
be the space of rationals with the usual topology. Let D be the diadic rationals
and E=X-D. Let a2b, aEX, b&EX. Let ¥=XU{a, &6 and let 7=5 U{la)
U0 :0&9 and 0=2DIU {6} U0 : 05 and O2F}. Then clearly % is a
topology for ¥ and (¥, %) is compact and therefore not mlc. Let U,={a} UX
and U2: {BlUX. U1 and U2 are open in (¥, #). We now show that U, is nlr.
Suppose pAU*CKCU,| where U*&U,N%Z and K is compact.

CASE 1. a¢£K. Then ¢#U*CKCX and U*&5, a contradiction.

CASE 2. ¢€K. There exist rationals #<s for which (r, s )NXCU*CK. Let
z&(r, s), z irrational. Select {)<ly<i.. in (r, s)NE so that lim /;=z in the
space of reals. If ng[li' liigpe-+}s then [F 14>1] is a family of closed sets
in K with the finite inters:ction property. But N{F,:7i=1}=¢, a contradiction.

U, can be shown to be n/c by a similar argument.

LEMMA 7.4. Let (X, 5) be a space and X=AUB. Suppose A and B are bolh
nlc and €AC0,, €BCO, 0,5 and 0,N0,=p. Then (X. ) is nic.

PROOF. Suppose ¢#0CKCX where O€5 and K is compact,
CASE 1. 0NO;#¢. Then ¢=0N0,CENEOC,SB. But KNE0, is compact and
thus B is not #nle, a contradiction.
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CASE 2. 0[10,=¢. Then ¢#0CKNE0,CA. But KNEDO, is compact and hence
A 18 not nie, a contradiction.

COROLLARY 7.5. Let (X, .7 ) be a normal space and let X=0,U0, where O,
and O, are in . If O and O, are nle, then X is nic.

PROOF. €0, and €0, are disjoint closed sets and hence can he separated by

disjoint open sets.

THEOREM 7.6. Let (X, .97) be a Hausdorff space and let X=UUV where U
and 'V are open and wnlc. Then X is nlc.

PROOF. Suppose ¢p#0CKC X where O£5 and K is compact. Now EUNEY
=@ and thus KNEU and KNEV are disjoint compact sets in a Hausdorff
space. There exist open sets O, and O, for which KNEVCO, and KNEUVCO,
and 0,N0,=¢. Now ONO,CKNE0,CKNUCU and KNEO; is compact. Since
U is nle, it follows that ONO,=¢. Thus p£AOTKNEO,CV and V is not ule, a

contradiction.

COROLLARY 7.7. Let (X, 7) be a Hausdorff space and let X=0,U...UO,
where Ot.EL?’_ and O, is nlc for ecal i, then X is nlc,

PROOF. Use the induction.

COROLLARY 7.8, Let (X, 9) be @ Hausdorff space and let X=U{0,: aE4)
where anf and O, is nlc for all =4, Then (X, T is wlc.

PROOF. If ¢0SKCX where 05 and K is compact, then ¢#0CKCO,
| - an and OalU“' an, is not #ic, a contradiction.

THEOREM 7.9. Let (X, 7 ) be a regular space (Hausdorff not assumed) and
suppose X=0UA where O=F and O and A are wic. Then (X, 7 ) is nlc.

PROOF. Suppose ¢p=0*CKCX where O% is open and K is compact,

CASE 1. ONO*s#¢. Since (X, 97) is regular, there exists an O0%¥&.5 such
that p=0*Cc(0¥)CONO*CO*CK. Thus c(0%) is compact and ¢=#0%C (0% CO
and O is not wlc, a contradiction.

CASE 2. ONO*=¢. Then ¢20*CKXNE0CA. But XNEQ is compact and hence
A is not wle, a contradiction,

The Ohio State University
U.S: Aq
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