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D.G. NEAR RINGS ON THE DIHEDRAL GROUP OF ORDER 2n, n EVEN
By J.]. Malone

1. Introduection

Previous work on d.g. near rings associated with the dihedral groups includes
the papers [I] through [5] and the thesis [7]. In [3] it is shown that the
number of nonisomorphic d.g. near rings definable on D,, # odd, is 1+2,
where 7 is the number of distinct primes occurring in the factorization of #.
Pilz [6] summarizes some of the results given in the other references, and may
also be consulted for definitions and basic results of near rings. The results in
the next two lemmas are taken, respectively, from [2] and [7].

LEMMA 1. Let (G, +) be a group and let K be an additive generating set for
G with an associative multiplication defined on it. If the multiplication on K may
be exiended so that, first, each element of K is right distributive and, secondly,
each element of G is left distributive, then (G, +) is associative. Thus (G, +, +)
is a d.g. near rving with gewerating set K.

LEMMA 2. If (Dg. +, ) is a d.g. near ring with trivial left annihilator,
then (Dy, +, +) is the unique d.g. near ving with ideniity definadle on D..

The dihedral group of order 2n will be designated by D.,, and presented as (a,
blna, 2b, a+b+a+b). Elements of D,, will be given in the form za-+z,
0<x<<m—1, 0<<z<{1, For the remainder of this paper it is assumed that » is
even and #>4. If N is a left distributive d.g. near ring defined on (D,,, +),
K will stand for its generating set (in the d.g. sense). Also, Z, will designate
the additive cyclic group of order #.

In [4] it was shown that the proper normal subgroups of D, are the subgroups
of (a), the normal subgroup S generated by & and the normal subgroup T
generated by e+8 S and T have index 2.

The symbol Zk\ln is used to indicate 2klnbut 2k+1’fn.

2. Main result

THEOREM. If 2in or if 23ln there are exactly 19 non-isomorphic d. g. near rings
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which can be defined on Dy, If Zzl\n, there are exactly 20. In the latler case, the
additional near ring N is such that N/L is isomorphic to the unique d.g. near
ring with identity on Dy where L=(4a) is the ideal of left annihilators of N.

PROOF. TFirst consider the case in which X can be taken so as to contain no
element with order greater than 2. An element of order 2 can only have elements
of order 1 or 2 in its column of the multiplication table since these column entries
are images of an element of order 2 under the various row endomorphisms, If an
element of order 2 is right distributive, it defines an endomorphism of D.,. Since
each element of the column has order at most 2, this column endomorphic image
is abelian, Thus the column image for an element of K isa Z; a Z,; or a D,
(Klein group) and the column kernel is Dy (@), S, or T; or (2z). In any
case, 2¢ is in the column endomorphism kernel of a generator so that (Ze)<{L.
Thus L has index at most 4 and at most 4 distinct row endomorphisms occur in
the multiplication table. The arguments made in [7] for #=4 cover all cases
in which (2¢)<L and readily extend to arbitrary even # The 19 non-isomorphic
near rings which result are described in Table 1. An abbreviated multiplication
table for X is given for each d.g. near ring to save space the rows and columns
of 0 and some elements of order 2 are not given and (n/2)e is indicated by the
symbol a. Note that near rings 1 through 16 are distributive.

We now turn to the main argument which concerns the exceplional cases.
Consider the case in which K must contain an element whose crder is greater
than 2 and call this element ya. Obviously, K must also contain at least ome
element of the form fe¢-5. Since the column kernel of te+5 must contain (Za),
the row kernel of each element of the form 2re contains fe-+&. The normal
subgroup generated by fe+5 is S if # is even and T if ¢ is odd. Thus, lor each
7, the row image of 2rz has order at most 2. In particular, (2¢)(ve) has order
1 or 2 and ¢(ye) must have order 1, 2, or 4, If it has order at most 2 for each
ya in K, then (2a)<<L. But all such d.g. near rings are given in Tahle 1.
Hence, in the present case, we must assume @(ye) hasorder 4. Obvicusly, this
case arises only if 4|n. Moreover, |a(ye)|=4 implies (2e)(ye)= (#/2)a and (4a)
(ya)=0. Since 2¢6£L, L#5 on T and so L=(dg), Since |(da)|=n/4, there are
exactly & different row endomorphisms.

Let ¢=n/4. The elements of order 4 in (@) are “4ca. So a(ya)=+ca. Since
the row kernel of 2zis S or 7', » must be odd. Then (ya)(ya)=yla(ya)l =y(Lca).
But, since y has the form 4m+1, y(+tee)=-+ce. Thus, as the proeduct of right
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distributive elements, either ¢z or —ea is right distributive. Let Ca designate
the one which is right distributive.

Since the column kernel of ye is (4e), the column image is isomorphic to D,
Thus (xa+0)(ye) has the form wa+b, w20, and is equal to y[(xe+b)a]l.
Hence, since y is odd, (xe+d)(va)=(xa+ba. Also, (xa+5)(2ra)=0 for all
values of x, Thus an even multiple of ¢ can be right distributive only if it is
a right annihilator since its column kernel contains both S and T and sois D,,
itself. In particular, il 8|# then ¢ is even and Ce is a right annihilator. Then,
O:fz(Ccz)zC‘ag. Since J’RQZQ(}'Q)::LCCI. 4" must be a multiple of . Let a =ua
s0 that 0=Ca”=Cua. Then #|Cu and since C= “n/4, this implies that #/4 is an
integer and @°EL. Since the row image of a contains an element of order 4,
the row kernel cannot he S or T but must he a subgroup of (¢). Hence ab#0,
say ab=va-+b. Then a(czb):va:z#m—?—b#() whereas (eg)b=0 since 4“EL. This
contradiction shows that ¢ cannot be even, that 22lm.

Since a(ya)=-+eca which has order 4, the (additive) order of @ must be
multiple of 4. Let Jrzzi:ilm, m odd.

Since |a(ya)| =4, we have (w/2)z2=2[e(va)] =(2a)(va). As noted before, the
row image in any 2raz row has order at most 2, Hence (2e)e must also he (#/2)a.
If z is odd, then (22)(za)={_2e)a=(/2)a. Furthermore, if za is right distributive,
then |a(ze)| =4 and m|z. If 2ra is right distributive then, as remarked carlier,
it is a right annihilator so that 2(2rg)=0 and 4m|2r. All told, an element va
can be right distributive only il m|2.

By the previous paragraph, the 2e row image is {0, (#/2)¢). From earlier,
the column kernel of ta+§ contains (2¢). If x» has the same parity as ¢, (2e)
{(za+b)=0. But, if x has parity different from ¢, (2e)(xa+8)=(n/2)a and xa+0
cannot be right distributive since e(xa+5) has order 2. If ze+d is to be right
distributive, then it has the form (2r+#)a-+0. Butsince (sa-+b)(2ra)=0 for each
sand », (se+d)[(2r+)a+b] =(sa+b)({e+D). Since (B, e+d} is a generating
set for D%. this shows that the columns of fe+6 and (2r+f)e-+& are identical.
Then, a[(2r+i)a+b] :2f‘fz2+(z(m+b) implies that 2m2:0 and 4m|2¢ or m|r if
(2r+1a+b is right distributive,

Thus we have shown that all right distributive eclements of N are in the
subgroup generated by the eclements ma and fa+5b. However, this subgroup is
D,, only if (m, n)=1. Since m is a factor of #, we have a d.g. near ring only

if m=1. Thus & has order 4m=4, i.e. ai= +ca.
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Since &” had order 4 it follows that the product of any two multiples of a is
a multiple of ¢ whose order is a divisor of 4, Thus the elements of (4a) are
also right annihilators. Recall that ya, y odd, is one of the right distributive
elements. If ¥ is one more than a multiple of 4 then all elements of the form
(4%+1a are also right distributive; if » is one less than a multiple of 4 then
all elements of the form (4%-+3)e are also right distributive. In particular, in
the first case ¢ is right distributive and in the second case —ga is right
distributive. Switching notation if necessary, we may presume that the generator
of the cyclic group of order # is right distributive. That is, without loss of
generality, we presume ¢ is right distributive and y is of the form 4%+1.

Because L is a (two-sided) ideal, we may consider the d.g. near ring N/L.
Since (2a)a=(n/2)a in N and 2| (#/2), (2a)z+0in N/L. Thus the left annihilator
of N/L is trivial. Recalling that (N/L, +)=D; and using Lemma 2, we conclude
that N/L=(Dg; 1), the unique d.g. near ring with identity on D,. To avoid
confusion with N, call the generators of (Z2_; 1) by a and 5 instead of ¢ and &
and let X={«, £). From [7] the multiplication table for X in (Dg; 1) is:

‘cr 3

a | a B
51 8 8

Hote that e is the identity in (Da; 1) and 3« is not right distributive. Thus,
under the natural homomorphism from N to N/L, the right distributive element
« maps to @& which may bhe identified with «. Since g-z=a, it follows that
a24ae(4cz). Thus 5:2 is the one of Zeca whose coefficient is of the form 4%41.
Hence we set @°=Da where D is the one of #/4 and 3n/4 which is of the form
4k41.

In &, without loss of generality, we may take & to be the right distributive
element of the form fe+0.

Since (4a) is a two-sided annihilator and since, in (Dg; 13, fa=§ and af=7
and BB=p8, it follows that be=4se+bd, ab=duc+b, and bb=4va-+b for some
integers s, #, and ». Consider the & column. In it (e+8)b=4(x—v)a. But no
element in the & column can have order greater than 2, If (#/2)a=4(z—wv)a, we
obtain the contradiction that 8[#. Thus 4(x—2)e=0 and #=v. In similar manner
we see that s=uv.

Since L=(4a) is a two-sided annihilator, the column (row) of any element
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of the form 4we+?& is the same as the b column (row). In particular, each
element of the form 4wa+& is right distributive.

For n=4, the multiplication on N, is given by the K table for (B 1). For
n such that 4|n and n>4, the K table is:

20|aDa b

ezlL‘a Da b
Da|Da Da b
b b b b

It is easily checked that this table extends to give a left distributive muitiplica-
tion on D,,. Since multiplication is associative on K, Lemma 1 guarantees that
the multiplication on D, is asscciative. Thus N is a d.g. near ring.

In summary, then when K must contain an element of order greater than 2,
it follows that 22[|n and L=(4e). In this case, besides the 19 d.g. near rings
which can be defined on any D,, #» even, there is exactly one additional d.g.
near ring definable. This near ring is such that N/L=(Dg; 1). Only if n=4 is
L trivial. In that case N=(Dg; D).

Table 1
L=D, I=§ L=(a) L=T
1| b a+b 2‘ B atb 3| 6 at 4| b avt
5| o 0 B| o 0 b| b b b| 5 0
a+b| 0 0 a+6| O b a+b| b b a-b| 0 0
L=S8 L=(a) L=§ L=(2a)
5| b atb 6| 5 atb 7| b atd 8| & atb
bl o o bl o @ & 0 0 b a a
a+b| 0 a a+b| a a a+b a a d‘rbl a a
I=T L=(2a) L=(a) L=(2a)
9| 6 atb 0|5 atb 1| b ats 12| 6 atb
b| 0 a b| a 0 b | a a 5| 0 a
a+b| 0 0 atd| a a a+bl a a a+b’ a 0
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L=(2a) L={2a) L=(2a) L=(2a)
3 5 atb | b atd 15| b atb 16] b oatb
bl a 0 bl b b N atb 0

a+tb ' a atb| b atbd atb| a b a+b | a

L=(a) L=S§S L=(2a)
17| b atd 18| 5 atb | 6 ats
8| & atb b0 0 5| 0

atb| b atb a—}-b} b atb atb| 0 at+b
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