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A NEW CLOSURE OPERATOR FOR KOK-Tt TOPOLOGIES 

By William Dunham 

L lntroduclion 

The coo∞pt 01 a generali7.ed c10sed (g-c losed) subset of a topologicaI space 

was imroduced by f\7orman Levine in [61 and has been discussed in papers ap 

pearing in this, and other, journals (see [1J. [4], and [5]) . In thc short note 

which 10110ws, we sha l1 use the g-c1osed subsets of a space ( X , Y ) to define a 

ne、、 c10sure operator, aod thus a new topology Yκ 00 the space and sha l1 

examioe somc 01 the properties of this oew topology, with emphasis on the 

transfer of “ regularity" conditions on ( X , Y) to “ separation" conditions on 

(X， Yη. 

2. Preliminaries 

DEFlNITIO:-l 2_ I (Levine [6]). 10 a topologicaI space (X , Y) , a subset A is 

g-closed if c(A)ζo whene、 er A드OE.Ý’ (here c denotes thc c10sure operator in 

(X,Y) ) 

THEOREM 2. 2. For each xEX, eitlzer Ixl is c/osed or 강 [xJ is g-c{osad (강 

denoles illc comþlemenl oþeraLor). 

PROOF. Iî [xl is not cIosed, then the only 얘en s때erset of 강 {쳐 is X itscl f. 

’Thus the closure 01' :!': 써 is contained in each of its neighborhoods and 강 씨 lS 

g-cIosed 

THEOREM 2. 3 (Levine [6]). Tlze ul!io l! 01 1/00 g-closed sets is g.closed 

PROOF. The proof is immedia te. 

DEFI:-IITlON 2.4 (Levine [61). A topologica i spacc is T t i[ every g-c1osed sεc 
"2 

is closeà 

RE\L\.RK 2. 5. Levine proves io [6] that every Tt-space is T .L and cvcry T.L 
";1 Ç) 

space is To• although neither implication is rcversible. In [4] Dunham cstabi ishes 

the [oIIowing characterization 
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THEOREM 2.6. (X , .!T) is T승 iff every singleton in X is either open or cIosed 

iff every subset of X is the intersection of alI 때en 똥ts and a lI CI야ed sets 

con tammg It. 

3. The generaIized cIosure operator 

DEFIKITION 3. I. For a spa∞ (X , .!T), Iet 9'= (A : AçX and A is g-closed) . 

DEFI "1 ITIOK 3.2. For any E드X， define c.‘ (E ) = n (A : Eç;AE9') . 

LEM~1A 3. 3. lf E도X， 11 .. " Eζc‘(E)ç;c(E) . 

PROOF. A cIosed set is g -closed. 

REMARK 3. 4. Both containment relations in the previous lemma may be 

prφer. Consider X = {a , b, c} with topology .!T = 얘， (a ) , (a , b) , X }. Then c융 

( (a) ) = (a, c) since the only g-cI야ed supersets of (이 are (a, 이 and X , while 

c( (a)) =X. T hat is, (a) 도c‘((a) )동c( (a)) . 

THEOREM 3.5. c* t's a K uratoUJski closure oþerator on X. 

PROOF. (i) c*(iþ) =야 and E드c‘(E) folIow from Lemma 3.3. 

( ii) If Ej UE2도AE9'， then Ei드A and so 감(E)Ç;A for ;=1 , 2. Thus c*(Ej) 

Uc*(E21드 n (A:EjUE‘도AE9') =선(Ej UE2) . ConverseJy, we assert that c*(E j U 

E，) Ç; c‘(E1)U선(E2) . For, il' there is an xεc융(Ej UE2) with xfE c융(E1) Uc*(E2) , 
thcn there are g-closed sets Al and A2 with EjÇ; A l' E2드A" and xfE A 1 UA2• 

But then E, UE2드A， UA" a g-cJosed set by Theorem 2.3, contradicting xE 

c*(E 1 UE,). We concJude that c용(E l UE2)= c‘(E1) U c용 (E2) . 

(i ii) Finally, if E드AE9'， then c*(E )Ç; A and c*(c‘(E))드A by defini tion of 

c*. Hence 선(cηE))ç; n (A : E드AE9') =c‘ (E ). 

By (i)-(i ii) , 감 is a cIosure operator on X. 

DEFl1\ITION 3. 6. Let .!T* be the topology on X generated by c‘ in t he usual 
man ncr. That is, .!T* = (0용 : c*(강0*)=강O*} . 

THEOR EM 3. 7. .!T드r‘ witli‘ eqllality iff ( X , .!T) is T공 

PROOF. lf E is ‘.r -cIosed, EÇ; c‘(E)도c(E) implies that E is .!T*-cIosed. 

T hus .!T드f‘. Fur ther , suppose .!T =J강 and let A드X be g -cIosed in ( X , .!T). 

T hen A=c‘ (A ) and 50 A is cIosed in .!T‘ =.!T. Thus (X , ‘숫) is T , . Conver
캉 

sely, if ( X , .!T) is T 1.' its cIosed sets and g -cIosed sets coincide and 50 c=깐. 
z 
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Hence ..r=..9껴. 

THEOREM 3.8. FOT ally sþace ( X , ..r), x ",<y i뼈lies c석x)#c흠(y) . 

PROOF. If {x ) is closed, y$ {x) = c {x ) = 선(x) . Otherwise, yE강 {x ) , a g .closcd 

set by Theorem 2. 2. Thus yεc*(y) Ç;;강 {X) , and so x$c용(y) . 

REMARK 3. 9. The previous result shows that (X , ..r‘) is always To' In fact, 

we can establish a stronger result: 

THEOR EM 3. 10. For a71y sþace ( X , ..r) , ( X , ..r‘ ) is T 1 . 

J 
PROOF. If {x) is ..r .closed, {x ) is ..r*.closed as well. Otherwise, 강 {x) is 

g 'closed and so 찬(강 {x) ) = :O; 씨， ‘",hich implies that {x ) is ι9'"'*-open. By Theo' 

rem 2. 6, (X, .9'"'*) is T훌 

REMARK 3.11. Based on the conclusion of T heorem 3.10, we sha l1 designate 

..r‘ as the ‘'T 1 extension" of ..r. \‘' e deduce irnm영iate1y 
Z 

COROLLARY 3.12. FOT alty 10þology, (..r‘)융 =..r* 

PROOF. (X , ..r*) is T 1 and th us (..r*) ‘=..r‘ by Theorem 3. 7. 

4. Some properties of the T 1 extcnsion 
? 

EXAMPLE 4. 1. The T 1 extension proccSS does not necessar i1y preserve nor 
2 

reverse the inclusion of topologies. Consider X = {a , b) with .9'"'二 ψ， X) and 

Z! = {Ø, {a). X). Then ..r용 is discrete and Z!*=Z! (s ince (X , Z!) is T승)， and 

thus ..9←드Z! wh i1e Z!‘도3각. However, if we now let '7' be the discrete topol 

ogy on X , then '7'*='7' and so Z!드'7' while Z!‘드'7'*. 

RE :V1ARK 4.2. The diff icult)’ encountered in the previous example results 

from the fact that the T 1 extension of both the discrete and indiscrete topology 
i 

is discrete. We characterize discreteness of (X , ..r*) in 

THEOREM 4. 3. T lze 10/10ωing cOllditions are equivalelll ‘ 

(a) ( X , ..r*) is discTele. 

(b) FOT each xEX, 강 {x) is g'closed ill ( X ,..9’). 

(c) 11 {x ) is ..r 'closed, {x) is ..r,oþell. 

PROOP. (a) implíes ω) : If ( X ’ ‘7 ‘) is discrete then, for each x, ~ {x) = c‘ 
(~ {x) )= n {A : ~ Ix) 드AE갱) . I t follows that ~ {x ) is itsel f g-c1osed in (X, .9'"'). 
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(b) implies (c) : Suppose (x} is .r-closed. Then ~(x} is .r-open and so 

c(~(찌 )드강 (x} by assumption (b) . Hence, (x} is .r -open as wel1. 

(c) implies (a): If (x} is .r-closcd. (x} E .r and thus (x} E .r* by Theorem 

3.7. If (xJ is not .3γ closed, ~ (x} is g -closed by Theorem 2.2 and again (x} E .r*. 

EXAMPLE 4.4. Let X be an uncountabJe set 씨th .r= φ， X} ， Then ( X ,.r) 
is compact, connected, and second axiom , while ( X , ‘:T* ) , being discrele by 

Theorem 4. 3, shares none of these properties. 

REMARK 4.5. The finaJ resu lts 01' this paper will show that, as we pUl 

stronger “ regularity" conditions on (X, .r), we induce stronger αseparation ’ 

properties on (X, .r*). We firsl recall t“ o defin itions 

DEFINITION 4. 6 (Davis [2]). (X ， .3η is an Ro-space if xεOE.r implies c(x ) 

드o (i. e. , singletons are g -closed) . 

DEFNJTlO:-l 4. 7 (see Dunham [3]) . ( X , .r) iS10eakly Hausdorff if c(x)= c(y ) 

whenever there is a net S : D• X 、vith /im S=x and 1’1Il S =y. 

REMARK 4. 8, lt is proved in [3J that any regular space is ,,-eakly Hausdorff 

and any ‘w‘v’e않akly Hat뼈o야r“떠ffs쟁pace is R，찌Uψ’ a띠1 t따[다thoug밴h n야e히lπ때the하rm때1 

THEORE티M、VI 4ι.9. I f (X,.r) is Ro' IIIe1l (X , .3•*) is T 1 

PROOF. If xEX, [x} is g-closed an d 80 c융(x)= [x}. 

THEOREM 4.10. If (X,.r) is 10ιakly Hausdorff, Iheη ( X , ‘7션 is T2 

PROOF. Let S : D• X be a nel 5uch lhat μ "，S=x and limS =y in (X ， .r션. 

We assert that x=y. For, by Theorem 3. 7, IimS = x and /ú“S =y in ( X ,.r), a 

weakly Hausdor[[ space, and thus c(x )=c(y ). 80, if cither 써 or (y} is 

3 ’-closed, then x =y. If neither [xJ nor (YJ is .r -closed , then both 강 씨 and 

~ (yj are g-closed by Theorem 2.2 and thu5 써 E .r* and (yJ E .r*, But then 

the net S is eventua l1 y in [x} n [y} E .r* and 50 x=y , It iollow5 that (X ,.r‘) 

is T ‘ 
‘ • 

THEOREM 4.11. If ( X ,.r) i s regu/ar, thell ( X . .3꺼 is T3 (regular alld T 1) . 

PROOF. Since (X , .r*) is T융， it suffices to prove regularity. Let xfE F*, 

where F용 is .r*-closed, 

CASE I. Suppose [x} is .r -closed. Since xfE F*= c‘ (F‘ ) , xfE A ro r some A ;;;;;,F ‘ 
、"ith A g-closed in (X’ ‘:T). But then A드강 {x} E .r and so c(A) Ç;;ξ (x} . Thus 
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x$c(A) in the reg비ar 5paCe ( X , Y) , and 50 there are disjoint open 않ts Oj and 

O2 in .3• 、vith xEOj and c (A)드O2， Hence xEO jE .3’‘ and F‘드A드c(A)드O2εY‘ 

‘\'i th Ojn 0 2=ø. 

CASE Z. SUppose now that (X) is not Y -closed. By Theorem Z. Z. 강 {셔 jS 

g .closed and thus 써 ε3’-'. We assert that F‘g강션(x) and thU 5 choosc yEF’ 
arbitra ry. lf (y) i5 ‘;r' closed , xE;Ë (y ) im plie5, by regula ri ty 01 (X, ..r) , that 

there exi5t 0 j and O2 ’ ith xEOjEY and (y) r;;，02EY도Y' with Oj n02=ø, a nd 

50 Yε ~c*(x) ‘ 。therwise ， il (y) is not Y - closed, we have, by Theorem 2. 2. 

J E (yj EY* \V ith (y ) n (x) =ø, and again yE~C'(X). This establishe5 the 

assertion that F*드강c‘(x) . But then xE (x) E .3’. and F용드강c‘(x)EY“‘ ith 

{x) n ~c’(x ) =ø. 

By ca5es (1) and (2) , ( X ,.3’‘) is reguJar and the theorem is proved. 

RE~ I ARK 4.12. \N’e summarize the results concerning the transfer of propert ies 

from éX ,Y) to ιY， Y‘) in the followi ng diagram 

(X ’ ‘T) : 펌--→-→‘시애‘w뼈v앤때때냈때e않빠때빼a잉삶씨k셔펀‘이l 

(X , Y *) : T3 →+T긴2---→ Tl--→딩 

EXA\IPLE 4. 13. Converses 01 the threc pre\'ious theorems faiJ. For if X = 

(a, b, c) with .3’ = (Ø, la) , X], then (X, y*) is di5crete by Thε。rem 4. 3, whi k." 

(X, Y) is not even Ro s ince (a) is not g .cJosed 

The author wishes to express hi5 appreciation to the Research Com mittee or 

Hanover College for lunding the preparation 01' thi5 paper. 
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