ON HOLOMORPHICALLY PROJECTIVE TRANSFORMATION OF HOLOMORPHICALLY PROJECTIVE RECURRENT KAHLER SPACES

By R.S. Sinha and H.C. Lal

1. Introduction

Recently, Ishihara [1]¹⁾ introduced the concept of holomorphically projective transformation (briefly HP-transformation) in complex manifolds. In the present paper, we will study the effect of HP-transformation on the holomorphically projective recurrent Kahler space (briefly, called HP- RK_n space). The cases of symmetric and recurrent Kahler spaces (briefly written as S- K_n and R- K_n spaces) have also been studied in the concluding article.

Let K_n be an $n = 2m \ge 2$ -dimensional Kahler space with real local coordinates $\{x^i\}^{2}$, then we have ([8], p. 70):

(1.1) (a)
$$\varphi_j^r \varphi_i^i = -\delta_j^i$$
 (b) $g_{ji} = g_{rs} \varphi_j^r \varphi_i^s$ (c) $\nabla_k \varphi_j^k = 0$

where ∇_k denotes the operator of covariant differentiation with respect to the Riemannian metric tensor g_{ji} . Evidently, in a Kahler space, we have the following

where $\varphi_{ji} = \varphi_j^r g_{ri}$, $\varphi^{ji} = \varphi_t^i g^{tj}$. Let R_{kji}^h , $R_{ji} = R_{rji}^r$, $R = R_{ji} g^{ji}$ be the Riemann curvature tensor, Ricci tensor and the scalar curvature of the space respectively, then the following identities [7,8] are valid in a K_n .

(1.3) (a)
$$R_{ji} = R_{ab} \varphi_j^a \varphi_i^b$$
 (b) $S_{ji} + S_{ij} = 0$ (c) $S_{ji} = -\frac{1}{2} \varphi^{tr} R_{trji}$

where

(1.3) (d)
$$S_{ji} = \varphi_j^r R_{ri}$$

Let K_n^* be another Kahler space obtained by the HP-transformation of K_n , then the christoffel symbols of K_n and K_n^* are related by the equation [6];

Numbers in square bracket refer to the references at the end of paper.
 All the latin indices i, j, k, ... run from 1 to n.

where ρ_i is a certain vector field, $\tilde{\rho}_i = \phi_i^r \rho_r$ and the quantities marked with symbol * denote the quantities of K_n^* . From (1.1)(a), (1.2)(a), (c) and the fact $\tilde{\rho}_i = \varphi_i' \rho_r$, we immediately have

(1.5) (a)
$$\tilde{\rho}_i \rho^i = 0$$
 (b) $\tilde{\rho}_i \tilde{\rho}^i = \rho_i \rho^i$ (c) $\rho_i \tilde{\rho}^i = 0$,

where

(1.5) (d)
$$\tilde{\rho}^i = g^{ij} \tilde{\rho}_i = -\varphi_r^i \rho^r$$
.

If ρ_i in (1.4) vanishes, the transformation becomes affine. Under the HPtransformation (1.4), as is well known, holomorphically projective curvature tensor (briefly, HP-curvature tensor) P_{kji}^{h} is invariant [5], i.e.,

$$(1.6) P_{k_{ji}}^{*h} = P_{k_{ji}}^{h},$$

where P_{bij}^{h} is defined as [6]

 $(1.7) \quad P_{kji}^{h} = R_{kji}^{h} + \frac{1}{n+2} (R_{ki} \delta_{j}^{h} - R_{ji} \delta_{k}^{h} + S_{ki} \phi_{j}^{h} - S_{ji} \phi_{k}^{h} + 2S_{kj} \phi_{i}^{h}), \text{ and satisfies the}$

(a)
$$P_{kji}^h = -P_{jki}^h$$

(b)
$$P_{kji}^h + P_{jik}^h + P_{ijk}^h = 0$$

(1.8) (c)
$$P_{rji}^r = P_{kri}^r = P_{kjr}^r = 0$$
 (d) $P_{kji}^r \varphi_r^{hr} = P_{kjr}^h \varphi_i^r$

(d)
$$P_{kji}^r \varphi_r^{hr} = P_{kjr}^h \varphi_i^r$$

(e)
$$P_{rji}^h \varphi_k^r = P_{rki}^h \varphi_j^r$$
 (f) $P_{rji}^t \varphi_i^r = 0$ (g) $P_{kjr}^t \varphi_i^r = 0$

$$(f) P_{rii}^t \varphi_t^r = 0$$

(g)
$$P_{kir}^t \varphi_t^r = 0$$

From (1.1)(a), (1.2)(b), (c), (1.3)(b), (c), (d), (1.7) and (1.8)(a), (c), (d) and (1.8)(f) by a straight forward calculation we have

(a)
$$P_{kiih} g^{kj} = 0$$

(b)
$$P_{kjih} g^{kh} = 0$$

(c)
$$P_{biih} g^{jh} = 0$$

(d)
$$P_{hiih} g^{ih} = 0$$

e)
$$P_{bijh} g^{ki} = -A_{jh}$$

(d)
$$P_{kiih} g^{ih} = 0$$
 (e) $P_{kiih} g^{ki} = -A_{ih}$ (f) $P_{kiih} g^{ji} = A_{kh}$

(1.9) (g)
$$P_{kjih} \varphi^{hj} = -2\varphi_i^r A_{rh}$$
 (h) $P_{kjih} \varphi^{hi} = \varphi_h^m A_{mj}$ (i) $P_{kjih} \varphi^{jh} = 0$

$$h) P_{kjih} \varphi^{ki} = \varphi_h^m A_{mj}$$

(i)
$$P_{kjih} \varphi^{jh} = 0$$

(j)
$$P_{hiih} \varphi^{ih} = 0$$

k)
$$P_{hiih} \varphi^{kh} = 0$$

$$(j) \ P_{kjih} \, \varphi^{ih} = 0 \qquad \qquad (k) \ P_{kjih} \, \varphi^{kh} = 0 \qquad \qquad (l) \ P_{kjih} \, \varphi^{ji} = \varphi^m_k \ A_{mh}$$

where

(1.10) (a)
$$P_{kjih} \equiv P_{kji}^{l} g_{lh}$$

(1.10) (a)
$$P_{kjih} \equiv P_{kji}^l g_{lh}$$
 (b) $A_{kh} \equiv (1/n+2)(n R_{kh} - R g_{kh})$.

The tensor A_{bh} , in view of (1.2)(a), (c)(d) and (1.3)(a) satisfies

(1.11) (a)
$$A_{bh} = A_{hb}$$
 (b) $A_{rh} \varphi_n^r \varphi_n^k = A_{mn}$ (c) $A_{hh} g^{kh} = 0$ (d) $A_{hh} \varphi_n^{kh} = 0$.

A Kahler space satisfying

$$\nabla_{l} P_{kji}^{h} = k_{l} P_{kji}^{h}, k_{l} \neq 0$$

has been called projective recurrent Kahler space [3], but we shall call such Kahler spaces holomorphically projective recurrent Kahler space (briefly HP-R K_n space).

2. HP-transformation of HP- RK_n space

Let us assume that K_n and K_n^* , both, are holomorphically projective recurrent spaces, then (1.12) together with

(2.1)
$$\nabla^*_{l} P^*_{kji} = k^*_{l} P^*_{kji}, \ k^*_{l} \neq 0$$

holds good. In view of (1.6), equation (2.1) takes the form

(2.2)
$$\nabla^*_{l} P_{kji}^{h} = k^*_{l} P_{kji}^{h}$$

But,
$$\nabla^*_{l} P^h_{kji} = \hat{\sigma}_{l} P^h_{kji} + P^m_{kji} \begin{Bmatrix} h \\ ml \end{Bmatrix}^* - P^h_{mji} \begin{Bmatrix} m \\ kl \end{Bmatrix}^* - P^h_{kmi} \begin{Bmatrix} m \\ jl \end{Bmatrix}^* - P^h_{kjm} \begin{Bmatrix} m \\ il \end{Bmatrix}^*$$
, which on substituting from (1.4) and simplyfying with the help of (1.8)(a), (d)

and (1.8)(e) becomes

(2.3) $\nabla_{l}^{*} P_{kii}^{h} = \nabla_{l} P_{kii}^{h} + (\delta_{l}^{h} P_{kii}^{m} \rho_{m} - \rho_{k} P_{lii}^{h} - \rho_{i} P_{kii}^{h} - \rho_{i} P_{kii}^{h}$

$$(2.3) \quad \nabla^*_{l} P^n_{kji} = \nabla_l P^n_{kji} + (\delta^n_{l} P^m_{kji} \rho_m - \rho_k P^n_{lji} - \rho_i P^n_{kjl} - \rho_j P^n_{kli} - 2\rho_l P^h_{kji}) - \varphi^h_{l} P^m_{kji} \widetilde{\rho}_m + \varphi^m_{l} (\widetilde{\rho}_k P^h_{mji} + \widetilde{\rho}_j P^h_{kmi} + \widetilde{\rho}_i P^h_{kjm}).$$

Now, we assume that

(A)
$$\nabla_{l}^{\star} P_{kii}^{h} = \nabla_{l} P_{kii}^{h}$$

then from (2.3) we find

$$\begin{aligned} (2.4) \quad & \delta_{l}^{h} \ P_{kji}^{m} \ \rho_{m} - \rho_{k} \ P_{lji}^{h} - \rho_{j} \ P_{kli}^{h} - \rho_{i} \ P_{kjl}^{h} - 2\rho_{l} \ P_{kji}^{h} - \varphi_{l}^{h} \ P_{kji}^{m} \widetilde{\rho}_{m} \\ & + \varphi_{l}^{m} (\widetilde{\rho}_{k} \ P_{mji}^{h} + \widetilde{\rho}_{j} \ P_{kmi}^{h} + \widetilde{\rho}_{i} \ P_{kjm}^{h}) = 0. \end{aligned}$$

On contracting (2.4) in the indices h and l and using (1.2)(d), (1.8)(a), (c), (f) and (1.8)(g), we find

$$(2.5) P_{hji}^m \rho_m = 0.$$

From (1.8)(d) and (2.5) we immediately have

$$(2.6) P_{kji}^m \tilde{\rho}_m = 0.$$

In view of (2.5) and (2.6), equation (2.4) takes the form

$$(2.7) \quad \rho_{k} P_{lji}^{h} + \rho_{j} P_{kli}^{h} + \rho_{i} P_{kjl}^{h} + 2\rho_{l} P_{kji}^{h} - \varphi_{l}^{m} (\widetilde{\rho}_{k} P_{mji}^{h} + \widetilde{\rho}_{j} P_{kmi}^{h} + \widetilde{\rho}_{i} P_{kjm}^{h}) = 0$$

Now, multiplying (2.5) by g^{ji} and using (1.9)(f), (1.10)(a), we find

(2.8)
$$A_{km} \rho^m = 0 \text{ or } A_{mk} \rho^m = 0$$

and on multiplying (2.6) by g^{ji} and using (1.5)(d), (1.9)(f) and (1.10)(a), we get

$$A_{km} \ \widetilde{\rho}^m = 0 \text{ or } A_{mk} \ \widetilde{\rho}^m = 0.$$

On transvecting (2.7) with g^{li} g_{kt} and using (1.2)(b),(c), (1.9)(a), (f), (g), (l) and (1.10)(a) we have ρ_i $A_{kt} - 2\varphi_i^m$ A_{mt} $\tilde{\rho}_k - \tilde{\rho}_i$ φ_k^m $A_{mh} = 2\rho^j$ P_{jkit} . Thus, transvecting (2.7) with g^{ji} $\rho^k g_{ht}$ and using (1.2)(c), (1.5)(a), (d), (1.9)(f), (1.10) (a), (2.8), (2.9) together with the preceding equation, we have $(\rho_k \rho^k)$ $A_{ll} = 0$, which implies either $\rho_k \rho^k = 0$, or $A_{lt} = 0$. Hence we have

THEOREM 2.1. If K_n^* be a HP-transform of K_n and condition (A) is satisfied, then one of the following must hold

- (i) $\rho_b \rho^k = 0$, i.e. HP-transformation becomes affine,
- (ii) A1,=0, i.e. Kn is an Einstein space.

Now, if $k_l = k^*_l$, in view of (1.12) and (2.2), we find that condition (A) is sat is fied and so from the above theorem, we have

THEOREM 2.2. If a HP-R K_n space is transformed into another HP-R K^*_n space with same recurrence vector by the HP-transformation (1.4), then one of the following must hold good (i) transformation is affine (ii) K_n is an Einstein space.

Singh ([3], p.215) has established the following theorem,

THEOREM (B). If a HP-R K_n space is an Einstein space also, then it reduces to a space of constant holomorphic sectional curvature or the recurrence vector is null.

In view of the theorem (2.2) and the above theorem we have

THEOREM 2.3. If a HP-R K_n space is transformed to another HP-R K_n^* space with same recurrence vector by a non affine HP-transformation (1.4), then K_n is a space of constant holomorphic sectional curvature or the recurrence vector k_l is a null vector.

3. The case of $k_l \neq k_l^*$

Now, we study the case in which the recurrence vector k_l of HP-R K_n space and the recurrence vector k_l^* of HP- RK_n^* space, where K_n^* is HP-transform of K_n by (1.4), are unequal. Evidently in this case (1.12), (2.1) and (2.3) hold. On multiplying (2.3) by g_{ht} and using (1.6), (1.10)(a), (1.12) and (2.1), we find

$$(3.1) \quad (k^*_l - k_l) \ P_{kjih} = (g_{lh} \rho_m P_{kji}^m - \rho_k P_{ljih} - \rho_j P_{klih} - \rho_i P_{kjih} - 2\rho_l P_{kjih})$$

$$- [\tilde{\rho}_m \varphi_{lh} P_{kii}^m - \varphi_l^m (\tilde{\rho}_k P_{mjih} + \tilde{\rho}_j P_{kmih} + \tilde{P}_i P_{kjmh})],$$

which on contracting by g^{ji} and using (1.9)(f), (1.10)(a) gives

$$(3.2) \quad (k^*_{l} - k_{l}) A_{kh} = g_{lh} A_{km} o^m - \rho_k A_{lh} - o^i P_{klih} - \rho^i P_{kilh} - 2\rho_l A_{kh} - \rho_l A_{k$$

On transvecting the skew symmetric part of (3.2) in hand k by g^{lh} and using (1.1) (a), (1.2) (b), (c), (d), (1.9) (a), (c), (d), (e), (g), (h), (i), (j), (1.11) (a), (b), (c) and (1.11)(d) we find

(3.3) (a)
$$A_{bw} \rho^{m} = 0 \text{ or } A_{wh} \rho^{m} = 0.$$

In view of (1.5)(d), (1.11)(b) and (3.3)(a) we at once, have

(3.3) (b)
$$A_{km}\widetilde{\rho}^m = 0 \text{ or } A_{mk}\widetilde{\rho}^m = 0.$$

Thus, in view of (3.3)(a), (b), equation (3.2) reduces into

$$\begin{aligned} (3.4) \quad & (k^{*}_{l}-k_{l})A_{kh}=-\rho_{k}A_{lh}-\rho^{i}P_{klih}-\rho^{i}P_{kilh}-2\rho_{l}A_{kh}+\varphi_{l}^{m}\widetilde{\varrho}_{k}A_{mh} \\ & +\varphi_{l}^{m}(\widetilde{\varrho}^{i}P_{kmih}+\widetilde{\varrho}^{i}P_{kimh}). \end{aligned}$$

Now, multiplying (3.4) by ρ^k and using (1.5)(a), (1.8)(a), (e), (1.10)(a) and (3.3)(a), we find

(3.5) (a)
$$\rho^i \rho^k P_{klih} - \tilde{\rho}^i \tilde{\rho}^k P_{klih} = -(\rho_k \rho^k) A_{lh} + \varphi_l^m P_{kimh} \tilde{\rho}^i \rho^k$$

whereas, if we multiply (3.4) by $\tilde{\rho}^k \varphi_l^l$, use (1.1)(a), (1.5)(b)(c), (1.8)(a)(e), (1.10)(a) and (3.3)(b), after rearranging the terms, we have

(3.5) (b)
$$\rho^{i} \rho^{k} P_{klih} - \tilde{\rho}^{i} \tilde{\rho}^{k} P_{klih} = (\rho_{k} \rho^{k}) A_{lh} + \varphi_{l}^{m} P_{kimh} \tilde{\rho}^{k} \rho^{i}$$
.

From (3.5)(a) and (3.5)(b), in view of (1.8)(a), we have

(3.5) (c)
$$P_{klih} \rho^i \rho^k = P_{klih} \tilde{\rho}^i \tilde{\rho}^k.$$

Using (3.5)(c) in (3.5)(a) and then multiplying the obtained equation by φ_s^l , we have, in view of (1.1)(a)

$$(3.5) (d) P_{kish} \tilde{\rho}^i \rho^k = -(\rho_l \rho^l) A_{rh} \varphi_s^r,$$

whereas using (3.5)(c) in (3.5)(b) and proceeding as above, we find

(3.5) (e)
$$P_{kish} o^i \tilde{\rho}^k = (\rho_l o^l) A_{rh} \varphi_{s}^r.$$

Thus, transvecting (3.4) with ρ^{l} and using (1.5) (d), (3.3) (a), (b) and (3.5) (c), we have

$$(3.6) (k^*_l - k_l) \rho^l + 2\rho_l \rho^l A_{hh} = -4P_{klih} \rho^l \rho^i.$$

On the other hand, on multiplying (3.1) by $\rho^k \tilde{\rho}^i \rho^i$ and using (1.5) (a), (b), (c), (d), (1.8)(a), (1.10) (a), (3.3) (a), (3.5) (c) and (3.5) (d) we have $(\rho_k \rho^k)$ $[(\rho_i \rho^i) A_{Ih} - 2P_{Iiih} \rho^j \rho^i] = 0$, which implies either $\rho_b \rho^k = 0$, or

$$(3.7) \qquad (\rho_i \rho^i) A_{lh} = 2P_{ljih} \rho^j \rho^i.$$

Hence we have

THEOREM 3.1. If a HP-R K_n space is transformed into another HP-RK $_n^*$ space with different recurrence vector by HP-transformation (1.4), then HP-transformation reduces to an affine transformation or equation (3.7) holds good.

We assume that HP-transformation is non affine, so (3.7) holds. Consequently substituting from (3.7) into (3.6) we have $[(k^*_l - k^l)\rho^l + 4(\rho_l \ \rho_l)] \ A_{kh} = 0$ which implies either $A_{kh} = 0$, i.e. K_n is an Einstein space, or $(k^*_l - k_l)\rho^l + 4(\rho_l \ \rho^l) = 0$. Thus we have

THEOREM 3.2. If a HP-R K_n space is transformed into another HPR- K^*_n space with different recurrence vector by a non-affine HP-transformation(1.4), then either K_n is an Einstein space or $(k^*_l - k_l)\rho^l + 4(\rho_l\rho^l) = 0$.

We consider the case $(k^*_l - k_l)\rho^l + 4(\rho_l \rho^l) \neq 0$, then by Theorem 3.2 HP-R K_n space is an Einstein space also and hence by Theorem (B) either K_n is of constant holomorphic sectional curvature or k_l is a null vector. Moreover, in a K_n of constant HP-sectional curvature, $P_{kji}^h = 0$ which in view of (1.6) gives $P_{kji}^{*h} = 0$, i.e K_n^* is also of constant holomorphic sectional curvature ([8], p.266). Thus we have

THEOREM 3.3. If a HP-R K_n space is transformed into another HP-RK*_n space with different recurrence vector by a non-affine HP-transformation and $(k^*_{l}-k_{l})\rho^l+4(\varrho_1\varrho^1)\neq 0$, then either K_n and K^*_n both are space of constant holomorphic sectional curvature or k_l is a null vector.

Combining Theorems 3.1, 3.2 and 3.3 we have

THEOREM 3.4. If a HP-R K_n space with recurrence vector k_l is transformed into another HP-R K_n^* space with recurrence vector $k_l^*(\neq k_l)$ by a HP-transformation (1.4), then one of the following cases occur.

(i) transformation is affine, (ii) K_n and K_n^* both are spaces of constant holomorphic sectional curvature, (iii) k_l is a null vector (iv) $(k_l^* - k_l) \rho^l + 4(\rho_l \rho^l) = 0$.

On the other hand on multiplying (3.4) by $\tilde{\rho}^l$ and using (1.5) (c), (d), (3.3) (a) and (3.3)(b) we find $(k^*_l - k_l) \tilde{\rho}^l A_{bb} = 0$. Thus we have

THEOREM 3.5. If a HP-R K_n space is transformed into another HP-RK*_n space with different recurrence vector by a HP-transformed (1.4), then either A_{kh} =0 i.e. K_n is an Einstein space or $(k^*_l-k_l)$ $\tilde{\rho}^l$ =0, i.e. vectors $(k^*_l-k_l)$ and $\tilde{\rho}^l$ form a set of mutually orthogonal vectors.

In view of Theorem (B) and the discussion before the Theorem 3.3, the above theorem yields.

THEOREM 3.6. If a HP-RK_n space is transformed into another HP-R K*_n space with different recurrence vector by a HP-transformation (1.4) and $(k^*_l - k_l)$ $\tilde{\varrho}^l \neq 0$, then, either K_n and K*_n both are spaces of constant holomorphic sectional curvature, or k_l is a null vector.

4. HP-transformation of a non-Einstein HP-R Kn

Till now we discussed the general case of $HP\text{-}RK_n$ space. Now, in the present article we will study the HP-transformation of that HP-R K_n space which is not Einstein space, i.e., for which $A_{kh}\neq 0$. In such a case by Theorem 3.5, the relation

$$(4.1) \qquad (k^*_l - k_l) \tilde{\rho}^l = 0$$

holds good. Also for a non-affine HP-transformation, generally called proper

HP-transformation, the relation

$$(4.2) (k^*_I - k_I) \rho^I + 4(\rho_I \rho^I) = 0$$

will hold good due to Theorem 3.2. Substituting from (1.12) and (2.2) into (2.3), we find

$$(4.3) \quad (k^*_l - k_l) \ P^h_{kji} = (\delta^h_l P^m_{kji} \rho_m - \rho_k P^h_{lji} - \rho_j P^h_{kli} - \rho_i P^h_{kji} - 2\rho_l P^h_{kji}) \\ - \varphi^h_l P^m_{kji} \ \tilde{\rho}_m + \varphi^m_l (\tilde{\rho}_k P^h_{mji} + \tilde{\rho}_j P^h_{kmi} + \tilde{\rho}_i P^h_{kjm}),$$

which on contracting in the indices h and l and using (1.2)(d), (1.8)(a), (c), (f) and (1.8)(g) gives

$$(4.4) (k^*_{h} - k_{h}) P^{h}_{kii} = (n-2) P^{h}_{kii} \rho_{h^*}$$

Thus multiplying (4.3) by $(k_h^*-k_h)$ and using (4.4), we get

$$\begin{split} (\mathbf{n}-3) \quad [(k^{\star}_{l}-k_{l}) \, P^{h}_{ji} \, \rho_{k}] = & -(n-2) \, [(\rho_{l} P^{h}_{lji} + \rho_{j} \, P^{h}_{kli} + \rho_{i} P^{h}_{kjl} + 2 \varrho_{l} P^{h}_{ikj}) \\ & - \varphi^{m}_{l} \, (\tilde{\rho}_{k} P^{h}_{mji} + \tilde{\rho}_{j} P^{h}_{kmi} + \tilde{\rho}_{i} P^{h}_{kjm})] \, \rho_{h} \\ & - \varphi^{h}_{l} (k^{\star}_{h} - k_{k}) \, P^{m}_{kji} \, \tilde{\rho}_{m}. \end{split}$$

Taking the sum of the above equation with the equations obtained by cyclic interchange of l, k and j in the above equation and using (1.8)(a), (b), (d) and (1.8)(e), we find

$$\begin{array}{ll} (\mathrm{n-3}) & [(k^{\star}_{l} - k_{l}) \; P^{h}_{li} + (k^{\star}_{k} - k_{k}) \; P^{h}_{li} + (k^{\star}_{j} - k_{j}) P^{h}_{li}] \, \varrho_{h} \\ & = - \, \tilde{\varrho}_{m} (k^{\star}_{h} - k_{h}) \; [\varphi^{h}_{l} P^{m}_{li} + \varphi^{h}_{} P^{m}_{li} + \varphi^{h}_{} P^{m}_{li} + \varphi^{h}_{} \rho^{m}_{li} + \varphi^{h}_{} \rho^{m}_{li}]. \end{array}$$

On transvecting (4.5) with g^{li} and using (1.2) (c), (1.8) (d), (1.9) (e), (f), (1.10)(a), (3.3)(a), (b), the facts $\tilde{\rho}_m = \varphi_m^r \rho_r$, $P_{kji}^h \rho_h = P_{kjih} \rho^h$ and $P_{kji}^m \tilde{\rho}_m = P_{kjim} \tilde{\rho}_m^m$, we find

$$(4.6) (k^*_l - k_l) g^{li} P_{kii}^h \rho_h = 0$$

since n > 2. On the other hand multiplying (4.5) by φ^{li} and using (1.1)(a), (1.2)(b), (1.8)(d), (1.9)(h), (1), (1.10)(a), (3.3)(a) and (3.3)(b) we find

$$(4.7) (k_{I}^{*}-k_{I}) \varphi^{li} P_{kii}^{h} \rho_{h} = 0,$$

since n > 2. Thus multiplying (4.3) by $g^{li} \rho_h$ and using (1.2)(b), (c), (1.5)(d), (1.8)(d), (1.9)(e), (f), (h), (l), (1.10)(a), (3.3)(a), (b) and (4.6) we have

(4.8) (a)
$$P_{kjih} \rho^i \rho^h = 0$$
,

which, in view of (1.1)(b), (1.8)(d) and (1.10)(a) yields

(4.8) (b)
$$P_{kjih} \bar{\rho}^i \bar{\rho}^h = 0.$$

Again, multiplying (4.3) by $\varphi^{li} \rho_k$ and using (1.2)(b),(c), (1.5)(d), (1.8)(d), (1.9)(e),(f),(h),(l), (1.10)(a), (3.3)(a),(b) and (4.7) we have

(4.9) (a)
$$P_{kiih} \tilde{\rho}^i \rho^h = 0$$
,

which in view of (1.8)(d) and (1.10)(a) immediately gives

(4.9) (b)
$$P_{kjik} \rho^{i} \tilde{\rho}^{h} = 0.$$

Thus transvecting (3.4) with ρ^h and using (1.8)(d), (1.10)(a), (3.3)(a), (4.8) (a) and (4.9)(a) we find

$$(4.10) P_{bilh} \rho^i \rho^h = P_{kilh} \tilde{\rho}^i \tilde{\rho}^h.$$

Now multiplying (3.1) by $\tilde{\rho}^l \rho^k \rho^h$ and using (1.5)(a), (c), (d), (1.8)(a), (1.10) (a), (3.3)(a), (3.5)(d), (4.1) and (4.8)(a) we find $(\rho_k \rho^k)[P_{ljih} \tilde{\rho}^l \rho^h + P_{ljih} \rho^l \tilde{\rho}^h] = 0$ and hence we have

THEOREM 4.1. If a non Einstein HP-R K_n space with recurrence vector k_l is transformed into another HPR- K^*_n space with recurrence vector $k^*_l(\neq k_l)$ by a proper HP-transformation, then

$$(4.11) P_{ljih} \tilde{\rho}^l \rho^h + P_{ljih} \rho^l \tilde{\rho}^h = 0$$

holds good.

Now, multiplying (3.1) by $\rho^k \rho^l$ and using (1.2)(c), (1.5)(a), (d), (1.8)(a), (d), (1.10)(a), (3.7) and (4.2), we find

$$(4.12) \qquad -(\rho_a \, \rho^a) \left[P_{kjih} \, \rho^k + \frac{1}{2} \, \tilde{\rho}_i A_{js} \, \varphi_h^s + \frac{1}{2} \, \rho_i A_{jh} + \tilde{\rho}_j A_{rh} \, \varphi_i^r \right) \right]$$

$$= \rho_h P_{kjim} \, \rho^m \, \rho^k + \tilde{\rho}_h P_{kjim} \, \rho^k \, \tilde{\rho}^m,$$

from which on transvecting by $\varphi_r^j \varphi_l^h$, using (1.5)(d), (1.8)(a), (d), (e), (1.10) (a), (1.11)(b) and rearranging the terms, we have

$$\begin{split} -(\rho_a \, \rho^a) \, \left[-P_{kjsh} \, \varphi_i^s \, \tilde{\rho}^k + \frac{1}{2} \, \tilde{\rho}_i A_{js} \, \varphi_h^s + \frac{1}{2} \, \rho_i A_{jh} - \rho_j A_{ih} \right] \\ = -\rho_h \, P_{kjim} \, \tilde{\rho}^m \, \tilde{\rho}^k + \tilde{\rho}_h \, P_{kjim} \, \tilde{\rho}^k \, \rho^m. \end{split}$$

Taking the sum of (4.12) and the above equation, using (4.10). (4.11) and noting the fact $\rho_a \rho^a \neq 0$, we obtain

$$(4.13) \quad P_{kjih} \, \rho^k - P_{kjsh} \, \varphi_i^s \, \tilde{\rho}^k = -\tilde{\rho}_i \, A_{js} \, \varphi_h^s - \rho_i \, A_{jh} - \tilde{\rho}_i \, A_{rh} \, \varphi_i^r + \rho_j \, A_{jh}.$$

On the other hand, multiplying (3.1) by $\rho^l \rho^i$ and using (1.5)(a), (d), (1.8) (a)(e), (3.7), (4.2), (4.8)(a) and (4.9)(b) we find

(4.14)
$$P_{kjih} \rho^{i} = \frac{1}{2} (\rho_{j} A_{kh} - \rho_{k} A_{jh} + \tilde{\rho}_{j} A_{mh} \phi^{m}_{k} - \tilde{\rho}_{k} A_{mh} \phi^{m}_{j})$$

since $\rho_a \, \rho^a \neq 0$. On contracting (4.14) with $\varphi_t^h \, \varphi_s^j$ and using (1.8)(d), (1.10)(a) and (1.11)(b), we find $\varphi_s^j \, P_{kjrt} \, \tilde{\rho}^r = \frac{1}{2} (\tilde{\rho}_s \, A_{kh} \varphi_t^h - \rho_k \, A_{st} - \rho_s \, A_{kt} - \tilde{\rho}_k \, A_{jt} \, \varphi_s^j)$. From (4.14) and the above equation, in view of (1.11)(b), we have

$$(4.15) P_{kjih} \rho^i - \varphi_j^m P_{kmih} \tilde{\rho}^i = \rho_j A_{kh} + \tilde{\rho}_j A_{mh} \varphi_k^m.$$

Substituting from (4.13) and (4.15) in (3.4) and using (1.8)(a), (1.11)(b), we find that $k^*_I - k_I = -4\rho_{I^*}$. Thus we get

THEOREM 4.2. If a non Einstein HP-R K_n space with recurrence vector k_l is transformed into another HP-RK $_n^*$ space with recurrence vector $k_l^*(\neq k_l)$ by a proper HP-transformation, then $(k_l^*-k_l)=-4\varrho_l$.

5. HP-transformation of R-K, and S-K, spaces

This article is devoted to the study of HP-transformation of R- K_n and S- K_n spaces. Suppose K_n and its HP-transform K_n^* both are recurrent spaces with k_I and k_n^* as recurrence vectors respectively. Then

(5.1)
$$\nabla_{l} R_{kji}^{h} = k_{l} R_{kji}^{h} \text{ and } \nabla_{l}^{*} R_{kji}^{*} = k_{l}^{*} R_{kji}^{*}$$

The following theorem is well known.

THEOREM (C) ([4], p.78). A R- K_n space is a HP-R K_n space with same recurrence vector.

Consequently from (1.6), (5.1) and the above theorem, we have

(5.2)
$$\nabla_{l} P_{kii}^{h} = k_{l} P_{kii}^{h} \text{ and } \nabla_{l}^{*} P_{kii}^{*} = k_{l}^{*} P_{kii}^{h}$$

Now, if $k_l = k^*_l$ we see that condition (A) of §2 is trivially satisfied and hence from Theorem 2.1, we have

THEOREM 5.1. If a R- K_n space is transformed into another R-K* $_n$ space with same recurrence vector by HP-transformation (1.4) then either K_n is an Einstein space or the transformation is affine.

Now, in a Kahler space of constant holomorphic sectional curvature, curvature

tensor R_{kji}^h takes the form $R_{kji}^h = \frac{k}{4} \left[(\delta_k^h g_{ji} - \delta_j^h g_{ki}) + (\varphi_k^h \varphi_{ji} - \varphi_j^h \varphi_{ki}) - 2 \varphi_{kj} \varphi_i^h \right]$ ([8], p.71), where k is an absolute constant. Differentiating the above equation covariantly with respect to x^l and using (1.1)(c), (1.2)(c) we find $\nabla_l R_{kji}^h = 0$ and so if the space be recurrent also, in view of (5.1) we find $R_{kji}^h = 0$, since $k_l \neq 0$, i.e., the space under consideration is a flat space. So, we remark

REMARK 5.1. A R- K_n space of constant holomorphic sectional curvature is a flat space.

Thus in view of Theorem 3.4, Theorem 4.2, Theorem (C) and Remark 5.1 we have

THEOREM 5.2. If a R- K_n space with recurrence vector k_l is transformed into another R- K_n^* space with recurrence vector $k_l^*(\neq k_l)$ by a HP-transformation (1.4), then one of the following cases occur:

- (i) transformation is affine,
- (ii) K, and K*, both are flat spaces
- (iii) k₁ is a null vector,
- (iv) $k_1 k_1 + 4\rho_1 = 0$.

In case K_n and K_n^* both are symmetric spaces, we have $\nabla_l R_{kji}^h = 0$ and $\nabla_l^* R_{kji}^h = 0$, consequently we can have $\nabla_l P_{kji}^h = 0 = \nabla_l^* P_{kji}^h$ and hence condition (A) of §2 is identically satisfied. Therefore, from Theorem 2.1 we have

Theorem 5.3. If a S- K_n is transformed into another S- K_n^* space by HP-transformation (1.4) then, either K_n is an Einstein space, or, the transformation is affine.

We conclude the article by considering the case when K_n is a R- K_n space with recurrence vector k_l and K^*_n is a HP-R K_n space with k^*_l as recurrence vector, i.e., $\nabla_l R^h_{kji} = k_l R^h_{kji}$ and $\nabla^*_l P^*_{kji} = k^*_l P^*_{kji}$ hold. If $k_l = k^*_l$, in view of Theorem (C) and 1.6 we see that condition (A) of §2 is trivially satisfied. Therefore from Theorem 2.1 we have

THEOREM 5.4. If a R- K_n space is transformed into a HP-R K_n^* space with same recurrence vector by a HP-transformation (1.4) then either K_n is an Einstein space or transformation is affine.

Moreover, with the help of Theorems 3.4, 4.2, (C) and Remark 5.1 we

can have the

THEOREM 5.4. If a R- K_n space with recurrence vector k_l is transformed into a HP-R K_n space with recurrence vector $k_l^*(\neq k_l)$, by a HP-transformation (1.4), then one of the following cases occur: (i) transformation is affine, (ii) K_n is a flat space, K_n^* is a space of constant holomorphic sectional curvature, (iii) k_l is a null vector, (iv) $k_l^* - k_l + 4\rho_l = 0$.

Department of mathematics University of Gorakhpur, Gorakhpur 273001, U.P., INDIA.

REFERENCES

- [1] S. Ishihara, Holomorphically projective changes and their groups in an almost complex manifold, Tohoku Math. J. 9(1959), 273-297.
- [2] S. Mathai, Kahlerian recurrent spaces, Ganita 20(2), (1969).
- [3] S.S. Singh, On a Kahlerian space with recurrent HP-curvature tensor, Accad. Naz. dei. Lincei, 51 [3, 4], (1971), 213—220.
- [4] S. S. Singh, On Kahlerian projective symmetric and Kahlerian projective recurrent spaces, Accad. Naz. Dei. Lincei 54 [1], (1973), 75-81.
- [5] Y. Tashiro, On a HP-correspondence in an almost complex space, Math., J. Okayama Univ., 6 (1957), 147-152.
- [6] S. Tachibana, and Ishihara, On infinitesimal holomorphically projective transformations in a kahlerian manifold, Tohoku Math., J. 12(1960) 77-101.
- [7] S. Tachibana, On Bochner curvature tensor, Nat. Sci. Report Ochanimizu Univ., 18 (1) (1967), 15-19.
- [8] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford (1965).