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An Example on Co_mpact linear Operators
By Eun-Hwi Lee

Let I* be the set { (&1, &:,+) | &&EC for i=1, 2, -+ rand i:} | & ]2 <o},

where € is the field of complex numbers. Then, as is well known #? is a com~
plex Hilbert space. We define
Y A/ I ——— & (3%)

by T (&, &z, )=(&:, —gél. -=-). In this note, we shall prove some properties

with respect to T (propositions 2, —3 and Theorem 5).

Let X and Y be normed spacés. An operator S ! X—Y 'is called a compact
linear operator if it satisfies the following conditions ;

(i) S is a linear operator.

(i) for every bounded subset M of X, S (M) :s relatively compact, i. e.,
m is compact in Y.

Lemma 1. Let X and Y be normed spaces. For a linear operator S L XY,
if S is bounded and dim 8§ (X) <oo, then S is compact.

Proof. Take a bounded sequence {z. {in X. Since | Tl=1 and
I Tza < I T llxn | o

{ Txn } is bounded. Therefore { Txx }is bounded (and closed). By our assump-

tion dim § (X)<<co, and thus { Tx. } is compact. It follows that { Tx, } has a

convergent subsequence. Since
S is compact+~for every bounded sequence {xn } in X, { Txn } has a con-
vergent subsequence ([1]}),

S is compact.

Proposition 2. The linear operator T defined in () is compact.

Proof. Define
Th! f? —————t (7
by Tn(x) = (&, _23."'. %ﬂ. 0,) for x==(&, &2, " &n,--)EL?, Then Ty
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is bounded and linear. Moreover dim (T» (£?))=n. Hence by Lemma 1, Txis

compact. Further-more, for each x= (&1, &§:, - )EL?,

e == 5 g.’_ 2 = < _l'... <;__.,_.,1__.,._,_ <
ta-Toei= % 180 5 b el st B e
22
S......._..__.—_.——
T lnt+1)
Taking the supremum over all x with [zl =1, we see that

R .
n+1l -

Therefore | T—Tn | =0 (i.e., Ta—T), and thus T is compact ((2]). If we
put

I T—Tn I =

i

er=(0--, 0 1, 0-)
then { ei, e:, -+ } is an orthonormal base of ¢?. Therefore every & £* has

a unique representation

o
ngl g.ie;,

and
szmg ‘1“‘5181
=i ]
We define an operator
j I L — -0
W ]
z | - Eie

Proposition 3. Under the above situation we have following.

@ 41, ‘*1'*, ‘-—l“,‘---, —L, “.v'} is the set of eigenvalues of T.

2 3 n
(ii) {ei, ez, en -} is an orthonormal set of eigenvectors of T.
(iii) T is self-adjoint and positive.

(iv) The following holds.
=5 1
T";;: j P, .
Proof . For each x==(&:, &1, " L &En, v )E 4 if we put

To= (&, 280 )= = A&, A&, o 28m, ),

n

we have

E1==ALy, e, %.',-:,\Em...... .
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An exsmple on compact linear operstors 3

Therefore, if l="-'-,1;- , then &=0 for i#+n. Sincen=1, 2,:, weget {1,

—é‘, —%— <.+ } as the set of eigenvalues of T. It is easy to see that
Te '—’-"‘}‘C;,
and thus ex=( 1,0,), es=(0,1,0, )+ ear=(0,0, 11t, 0--), - are

eigenvectors of T. Moreover, since e Le; for i#+j, we have {ei, es,->ven, -
~++} as an orthonormal set of eigenvector of T.
Therefore (i) and (ii) are proved.

For each x=(&:, &:, " &n, ) EL*

(Tx,x)ag-]]:‘—& £Ezo0,

and (Tx, x)=0 <« x=0, where ( s )} is the inner product defined on

£?. Hence T is positive. For y= (1, 92, -, =) EL?,
= gm .l. .
(Tx’ y) (1, T!I) E‘ j gi ?j -

So, it follows that T is self -adjoint.
For (iv) let x=1(&,, &2, - &n, ) E 0 *. Then

oo

IT-5FP)elr=1 % o lr=3% Fl&ls

=41

1 ¥ NPT T3 L
ey D Y LA Ry ey

so that
- .
IT~% +P Isty— o0
as m 00,
For any real A we define
E,\zE_:‘AP; (A€R), (3%3%)

which is an one-parameter family of projections, A being the parameter.

Definition 4. A real spectral family is a one-parameter family &=(E.) rex of
projections E. defined on a Hilbert space H which depends on a real parameter
A and is such that

(a) E.sE, hence Ex E,=E,E.=Ex for A< u.
(b) f\im Exx=0 for x&H.
(c) Lim+ Exx =2 for x €H.
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{d) Exso x=hm E,,sz,\x,

2t wA 4+ 0
where g—+A*" means that ‘we let u approach A from the right.
Then { E. } rer defined as (3%%) is a spectral family associated with  the
bounded self-adjoint linear operator T.

Theorem 5. T has the spectral representation
1
T==S o AdEx,
(4]
where &= (E.).er is the spectral family associated with T

Proof . At first we have note that

0=inf (Tx, zx), 1=sup (Tx x).

i1 W1

We choose a sequence { .} of partions of (g, b), where a< 0 and 1<b,

That is, every :§n is a partion of (g, &) into intervals
An.fz('\n.f.;-{n‘a‘), ji=1,2,

of length 0 ( An, ., )=Mn, —An, Here‘ K, s =An ;01 for j==1,n—1.

In particular, the sequence { 8, } is such that

/J (8n )xm§x ? (Aﬂnq) 0 (* %* *)

as n—+oo, We put
E(an ;)=Eu.,—En.,
then we have
An s E (Bon ) )STE (Bns ) Stny E (8n,,)

([ 1)). By summation over j from 1 to n for every n we get

T (3

B A E(An )EX TE (An ) S5 pin sE (D) (%K % %)

ot
Since

(i) pn =&z s for j=1,+n—1.

(i) A< Q == E,=90

(iii) n== 1 == E,=I (identity operator),

We simply have
TS E (A )=TE (Esn s —EAq )=T (I—0)=T.

Formula (% % %) implies that for every &> 0 there is an n such that 7(8,)<

€, and thus in (% % % %) we have

27:: Mo + E (Dn, 5) —'2 An:E([.\n J)"‘; (}an"An J)E(An J)ﬁeé‘.{
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An example on compact linear operators 5

From this and (% % % %), given any £> 0 there is an N such that for every

A
n>N and every choice of An ,E A we have

IT =% An E@a) I <e.
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