An Example on Compact linear Operators

By Eun-Hwi Lee

Let l^2 be the set $\{(\xi_1, \xi_2, \cdots) \mid \xi_i \in \mathbb{C} \text{ for } i=1, 2, \cdots \text{ and } \sum_{l=1}^{\infty} \mid \xi_l \mid^2 < \infty \}$, where \mathbb{C} is the field of complex numbers. Then, as is well known l^2 is a complex Hilbert space. We define

$$T: \ell^2 \longrightarrow \ell^2 \qquad (\divideontimes)$$
 by $T((\xi_1, \xi_2, \cdots)) = (\xi_1, \frac{\xi_2}{2}, \cdots)$. In this note, we shall prove some properties

with respect to T (propositions 2, -3 and Theorem 5).

Let X and Y be normed spaces. An operator $S: X \rightarrow Y$ is called a compact linear operator if it satisfies the following conditions;

- (i) S is a linear operator.
- (ii) for every bounded subset M of X, S(M) is relatively compact, i. e., $\overline{S(M)}$ is compact in Y.

Lemma 1. Let X and Y be normed spaces. For a linear operator $S: X \rightarrow Y$, if S is bounded and dim $S(X) < \infty$, then S is compact.

Proof. Take a bounded sequence $\{x_n\}$ in X. Since ||T|| = 1 and $||Tx_n|| \le ||T|||x_n||$.

 $\{Tx_n\}$ is bounded. Therefore $\{\overline{Tx_n}\}$ is bounded (and closed). By our assumption dim $S(X) < \infty$, and thus $\{\overline{Tx_n}\}$ is compact. It follows that $\{Tx_n\}$ has a convergent subsequence. Since

S is compact for every bounded sequence $\{x_n\}$ in X, $\{Tx_n\}$ has a convergent subsequence ([1]),

S is compact.

Proposition 2. The linear operator T defined in (*) is compact.

Proof. Define

$$T_n: \ell^2 \longrightarrow \ell^2$$

by
$$T_n(x)=(\xi_1, \frac{\xi_2}{2}, \cdots, \frac{\xi_n}{n}, 0, \cdots)$$
 for $x=(\xi_1, \xi_2, \cdots, \xi_n, \cdots) \in \ell^2$. Then T_n

is bounded and linear. Moreover dim $(T_n(\ell^2))=n$. Hence by Lemma 1, T_n is compact. Further-more, for each $x=(\xi_1, \xi_2, \cdots)\in \ell^2$,

$$\| (T-T_n)x \|^2 = \sum_{j=n+1}^{\infty} |\frac{\xi_j}{j}|^2 = \sum_{j=n+1}^{\infty} \frac{1}{j} |\xi_j|^2 \le \frac{1}{(n+1)^2} \sum_{j=n+1}^{\infty} |\xi_j|^2 \le \frac{\|x\|^2}{(n+1)^2}$$

Taking the supremum over all x with ||x|| = 1, we see that

$$||T-T_n|| \leq \frac{1}{n+1}.$$

Therefore $||T-T_n|| \to 0$ (i.e., $T_n \to T$), and thus T is compact ([2]). If we put

$$e_i = (0 \cdots, 0 \stackrel{i}{1}, 0 \cdots)$$

then $\{e_1, e_2, \dots\}$ is an orthonormal base of ℓ^2 . Therefore every $x \in \ell^2$ has a unique representation

$$x = \sum_{i=1}^{\infty} E_i e_i$$

and

$$Tx = \sum_{j=1}^{\infty} \frac{1}{j} \, \mathcal{E}_j \, e_j$$

We define an operator

Proposition 3. Under the above situation we have following.

- (i) $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$ is the set of eigenvalues of T.
- (ii) $\{e_1, e_2, \dots, e_n, \dots\}$ is an orthonormal set of eigenvectors of T.
- (iii) T is self-adjoint and positive.
- (iv) The following holds.

$$T = \sum_{j=1}^{\infty} \frac{1}{j} P_{j}.$$

Proof. For each $x = (\xi_1, \xi_2, \dots, \xi_n, \dots) \in \ell^2$ if we put

$$Tx = (\xi_1, \frac{\xi_2}{2}, \dots, \frac{\xi_n}{n}, \dots) = \lambda_x = (\lambda \xi_1, \lambda \xi_2, \dots, \lambda \xi_n, \dots),$$

we have

$$\xi_1 = \lambda \xi_1, \dots, \frac{\xi_n}{n} = \lambda \xi_n, \dots$$

Therefore, if $\lambda = \frac{1}{n}$, then $\mathcal{E}_i = 0$ for $i \neq n$. Since $n = 1, 2, \dots$, we get $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ as the set of eigenvalues of T. It is easy to see that

$$Te_{j} = \frac{1}{j} e_{j},$$

and thus $e_i = (1, 0, \cdots)$, $e_i = (0, 1, 0, \cdots) \cdots$, $e_n = (0, \cdots 0, 1, 0, \cdots)$, \cdots are eigenvectors of T. Moreover, since $e_i \perp e_i$ for $i \neq j$, we have $\{e_1, e_2, \cdots e_n, \cdots\}$ as an orthonormal set of eigenvector of T.

Therefore (i) and (ii) are proved.

For each $x = (\xi_1, \xi_2, \dots \xi_n, \dots) \in \ell^2$

$$(Tx, x) = \sum_{j=1}^{\infty} \frac{1}{j} \, \xi_j \, \bar{\xi}_j \ge 0,$$

and $(Tx, x) = 0 \leftrightarrow x = 0$, where (,) is the inner product defined on ℓ^2 . Hence T is positive. For $y = (\eta_1, \eta_2, \dots \eta_n, \dots) \in \ell^2$,

$$(Tx, y) = (x, Ty) = \sum_{i=1}^{\infty} \frac{1}{i} \xi_i \bar{\eta}_i$$

So, it follows that T is self-adjoint.

For (iv) let $x = (\xi_1, \xi_2, \dots \xi_n, \dots) \in \ell^2$. Then

$$\| (T - \sum_{j=1}^{m} \frac{1}{j} P_j) x \|^2 = \| \sum_{j=m+1}^{\infty} \frac{1}{j} \xi_j e_j \|^2 = \sum_{j=m+1}^{\infty} \frac{1}{j^2} | \xi_j |^2 \le \frac{1}{(m+1)^2} \sum_{j=m+1}^{\infty} | \xi_j |^2 \le \frac{\| x \|^2}{(m+1)^2},$$

so that

$$||T - \sum_{i=1}^{m} \frac{1}{i}P_i|| \le \frac{1}{m+1} \to 0$$

as $m \to \infty$.

For any real λ we define

$$E_{\lambda} = \sum_{\lambda_{i} \leq \lambda} P_{i} \ (\lambda \in \mathbb{R}), \tag{**}$$

which is an one-parameter family of projections, λ being the parameter.

Definition 4. A real *spectral family* is a one-parameter family $\xi = (E_{\lambda})_{\lambda \in \mathbb{R}}$ of projections E_{λ} defined on a Hilbert space H which depends on a real parameter λ and is such that

- (a) $E_{\lambda} \leq E_{\mu}$ hence E_{λ} $E_{\mu} = E_{\mu}E_{\lambda} = E_{\lambda}$ for $\lambda < \mu$.
- (b) $\lim_{\lambda \to \infty} E_{\lambda} x = 0$ for $x \in H$.
- (c) $\lim E_{\lambda} x = x$ for $x \in H$.

(d)
$$E_{\lambda+0} x = \lim_{\mu \to \lambda+0} E_{\mu}x = E_{\lambda}x$$
,

where $\mu \rightarrow \lambda^{+0}$ means that we let μ approach λ from the right.

Then $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ defined as $(\divideontimes \divideontimes)$ is a spectral family associated with the bounded self-adjoint linear operator T.

Theorem 5. T has the spectral representation

$$T=\int_{0}^{1} \lambda dE_{\lambda},$$

where $\xi = (E_{\lambda})_{\lambda \in \mathbb{R}}$ is the spectral family associated with T.

Proof. At first we have note that

$$0 = \inf_{\|x\|_{1}=1} (Tx, x), \quad 1 = \sup_{\|x\|_{1}=1} (Tx, x).$$

We choose a sequence $\{\mathcal{L}_n\}$ of partions of (a, b), where a < 0 and 1 < b. That is, every \mathcal{L}_n is a partion of (a, b) into intervals

$$\triangle_{n,j}=(\lambda_n,j,\mu_n,j), \quad j=1,2,\cdots n.$$

of length $\ell(\Delta_n, j) = \mu_{n,j} - \lambda_{n,j}$ Here $|\mu_n, j| = \lambda_{n,j+1}$ for $j = 1, \dots, n-1$. In particular, the sequence $\{s_n\}$ is such that

$$\eta(\mathfrak{Z}_n) = \max \ell (\triangle \mu_{n,l}) \to 0 \qquad (***)$$

as $n \to \infty$. We put

$$E(\triangle_{n,l})=E_{\mu,l}-E_{n,l}$$

then we have

$$\lambda_{n,j} E(\triangle_{n,j}) \leq TE(\triangle_{n,j}) \leq \mu_{n,j} E(\triangle_{n,j})$$

((1)). By summation over j from 1 to n, for every n we get

$$\sum_{j=1}^{n} \lambda_{n,j} E\left(\triangle_{n,j}\right) \leq \sum_{j=1}^{n} TE\left(\triangle_{n,j}\right) \leq \sum_{j=1}^{n} \mu_{n,j} E\left(\triangle_{n,j}\right) \qquad (****)$$

Since

- (i) $\mu_{n,j} = \lambda_{n,j+1}$ for $j = 1, \dots, n-1$.
- (ii) $\lambda < 0 \Longrightarrow E_{\lambda} = 0$
- (iii) $n \ge 1 \Longrightarrow E_{\lambda} = I$ (identity operator).

We simply have

$$T\sum_{j=1}^{n} E(\Delta_{n,j}) = T\sum_{j=1}^{n} (E\mu_{n,j} - E\lambda_{n,j}) = T(I-0) = T.$$

Formula (***) implies that for every $\xi > 0$ there is an n such that $7(\Re_n) < \varepsilon$, and thus in (****) we have

$$\sum_{j=1}^{n} \mu_{n,j} E\left(\triangle_{n,j}\right) - \sum_{j=1}^{n} \lambda_{n,j} E\left(\triangle_{n,j}\right) = \sum_{j=1}^{n} \left(\mu_{n,j} - \lambda_{n,j}\right) E\left(\triangle_{n,j}\right) \leq \varepsilon I.$$

From this and (****), given any $\xi > 0$ there is an N such that for every n > N and every choice of $\hat{\lambda}_n \in \Delta_n$, we have

$$\parallel T - \sum_{j=1}^{n} \hat{\lambda}_{n,j} E(\triangle_{n,j}) \parallel < \varepsilon.$$

References

- [1]. E. Kreyszig: Introductory Functional Analysis with Applications. John wiley and sons, New York. (1978).
- [2]. W. Rudin: Functional Analysis. McGraw-Hill, Inc. (1973)

Jeonju College