HONAM MATHEMATICAL JOURNAL 1
Volume 4, Number 1, Julv. 1982

REMARKS ON CR-SUBMANIFOLDS OF A COMPLEX
PROJECTIVE SPACE

By Yong-Wan Lee and Young-Jin Suh

§ 1. Introduction

Recently, several authors have defined and studied the CR-submanifolds of a
Kaehlerian manifold and the contact CR-submanifolds of a Sasakian manifold (See
{1}, (2), [5), (6) and (7)). In particular, Yano and Kon [6) studied
contact CR -submanifolds of a (2m+ 1) -dimensional unit sphere S$*™*!,  Fur-
thermore, Pak [5] studied the following theorem by using the theory of Rieman-

nian fibre bundies.

Theorem A. Let M be an n-dimensional complete CR-submanifold of CP™
with semi-flat normal connection and parallel f-structure in the normal bun-
dle. If the mean curvature vector of M is parallel and if ASxféi=[5A%. s

valid at any point of M, then M is CP™* or M is
X 13
FTE™ ()X X 8™* (rx)), n+1~=‘-§‘:m‘- 2=k s=n-+1, };ff =1.

The purpose of this paper is to project the quanties of 7' (M), which is
concerned with locally symmetry, onto M and to determine CR-submanifolds of
a complex projective space CP™ with the corresponding conditions; where T

is the submersion defined by the Hopf-fibration: §?™'!' —-CP"
§ 2. CR-submanifold of a complex projective space.

It is well known that complex projective space CP™ is a complex m-dimen-
sional (real 2 m) Kaehlerian manifold ;Wiﬂl constant holomorphic  sectional
curvature 4., Let CP™ be covered by a system of coordinates neighborhoods
{ U: ys } and dencte by gn components of the Hermitian metric tensor and
by Fi{ those of the complex structure of CP™, where and in the sequel h,
i, j run over the range { 1,2,--,2m}. Then we have
(2.1) F!F} =—86}, F'FFgne=gn, DF} =0

where D, denotes the operator of the covariant differentiation with respect
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10 g,

Let M be an n-dimensional Riemannian manifold cover by a system of
coordinate neighborthoods { U;x® | and immersed isometrically in CP™ by the
immersion {; M~ CP™ represented by y'=y'(x?. We put Bi=0.y‘ (Ba=0
/9z2), then Bé are tangent to M. Then we have gsa==g. Bj B since the im-
mersion is isometrir.;, where and in the sequel the indices a, b, ¢ and x, 4, z,¢
run over the range { 1, 2,-,ntand {n+1,:-, 2m } respectively.

We denote by N{ the unit normals to M and <, the operator of van der
Waerden-Bortolotti covariant differentiation with respect to gea. Then equations
of Gauss and Weingarten are respectively given by
(2.2) VoeBé=AwWNi, uNi=—A¢xB
where A& are ssecond fundamental tensors of M in CP™ and Af: =A:2 g™ gys,
(g% )= (gar )", gsx being components of the metric of the normal bundle T* (M)

Concerning the transform of B% and Ni{ by F!, we have
(2.3) FFEB.=fgBs+fINt, FINt=—f¢BLt+fEN}
where we have put fea=ff gea, foy=fFgx and fx=f3gzx. Moreover we get
(2.4) fea=—fao, f3=ft, fox=—fxv

Applying F to (2. 3) and making use of (2. 1), we have
(2.5) [fefs=—08+(Ffs, FEFEHfLFE=0=F5f8+f2f8, fFf2 4%~

12,
from which, differentiating covariantly along M and using (2. 1) and (2, 2),
we find
(2.6) Vef8=A&fFf—AE[E, fE=AB[EF—ALSfE,
o fE=ALfE—ALfE, bfY¥=AR[E£—ALf2.

Snce CP™ has constant holomorphic sectional curvature 4, ‘the equations of
Gauss, Codazzi and Ricci are respectively given by
(2.7) Kab =058~ 08 g +[&fco—f8fap— 2facf8+ A2 Al —AcPA T,
(2.8) VeAod —VoAcE=fEfra—[Efu—2f cfE,

(2.9) KaF=fdfey—Ffav— 2 facf3 +AF A5 —AZASS,
where Kacf and Ka¥ are respectively components of the curvature tensors of

M and T* (M). Thus, on the above structure equations, Yano and Kon proved

Theorem 2. 1. (See (7)) A necessary and sufficient condition for a sub-

manifold of a Kaehlesian manifold M to be CR-submanifold is that the tensor
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fields ¢ and % appearing in (2.3 ) satisfy
(2.10) fifa=0 or equivalently féf2 =20
where f§ and [} are f-structure defined in M and T* (M) respectively.

§ 3. Main results.

Let's denote by (M, M. n) the compatible submersion with the Hopf-fbration 7
which is given in § 1. In paper [5], Pak proved the equivalerice of CR-sub-
manifold' M of CP™ and contact CR-submanifold M of $2™ ' in (M, M, m, In
this point of view, we now assume that M is the locally symmetric space as a
contact CR-submanifold of S then CR-submanifold M satisfies
(3.1) f& Kecva+[& Kaeva +[6 K acea+ [§ Kacve = 0
(3.2) f§(Fefon—efco)+fE (Vefw—Tafer) V15 (Vefue —Vafee) =0,
where we have used the equations of co-Gauss and co-Codazzi in (M, M, #),
(Sece [3), [4)). Hence, substituting (2. 6) into (3. 2) and making use
of (2.10), we have (FEAFfE)fax— (f§AEfS)fex=0, from which, 1ran-
svecting f¢ and also using (1.5), (1.10), we find
(3.3) (FEAEFf ) fratfEA zf2=0

On the other hand, if we assume the f-structure f# in the normal bundle of
M is parallel, then we have A ff=A%:f2 by (2. 6), which, together with
(3.3), implies

(3.4) ngebzf§$0
from which, transvecting f§, we find by using (2.5}
(3.5) Aawzf3=Pro:f5

where we have put PE=AZ%f%2ff, and morcover P is svmmeiric for all  in-
dices x, y and z by virture of (2. 4) and parallel f-structure in T (M),

We now consider the converse problem. Then we will determine  the certain
CR -submanifolds of CP™ with the above conditions (3. 1) and (3. 4). Thus,
if we use equation (2.7 ) to (3. 1), then we get

(fEAsex+[§Aaex)AcE+ (FEAcex+1EAcrx)Aaf ~— (fEAuex+f§ Acox) Act —

(f§Acext+fEAeax)Adf = O
, from which, transvecting f¢ and using (2.10), (3.4) and (3.5), we have

PyFf3 (A€xfer—[fEA cw) —PEfE(A§x fer —[& Acox) = 0.

Transvecting the above equation with f& and using (2. 5), (2.10) and
(3.4), we have
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(3.6) sF(Aaffeo—FEAcon ) fRfE + P uf (Adefeo —fEA et ) =0
On the other side, if we suppose CR-submanifold M has semiflat normal con-
nection, then (2. 9) implies f&fay—f%fs +AdAYy —AcAly =0, from which,
transvecting f2f% and taking account of (3.5), we have
(3.7) PIPAMMEFE—PAPYIEfE+HEff¢far—f2fE el ==
Thus, making use of (3.6 ), (3. 7) and the last equation of (2.5),
we find
(Aaffeo—f8Acov)8re—(AaSfer—fGA cvz) 8
+(ASy feo —f8Aeow )i Frv—(AS 2 fes —F8Aebz) [3fiv=0,
where we have used the equation Ac2f%= 0 which is proved in [5 ],
Contracting above equation with respect to y and z and noticing Acf f# =0 im-
plies
{P—(1+P) | (A8xfew —[§ Aerx) =0, (p=2m—n)
where we have put p=| f= Il 2, which is locally constant on M since f-structure

in T* (M) is parallel. Therefore, combining Theorem A and above facts, we have

Theorem 3. 1. Let M be an n-dimensional (p+ 1-+p) complete CR-submani-
fold of, CP™ with semi-flat normal connection and parallel f-siructure in
the normal bundie. If the mean curvature vector of M is parallel, and if 3.
1) and (3. 4) are valid on M, then M is CP™? or M is

F(S™ (1) X X S™(ra)), nt1=Fm, 2skSmtl, Trr=1.

When M is generic submanifold of CP®™, then we immediately have by (2. 8)
Corollary 3. 2. Let M be an n~dimensional (p > 1) complete generic  sub-
manifold of CP™ with flai normal connection. If the mean curvalure vector of

M is parallel, and if (2.1) and (2.4 ) are valid on M, then M is
L3 K
F(S™ (r ) X+ X S™ (rs)), n+1“~=“‘:m‘, 2sk=m+ 1, '2:1?31-
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