Morphisms between Universal Bundles

By Seung-Ho Ahn

Let $V_{\kappa}(F^n)$ be the Stiefel variety of orthogonal k-frames in F^n , and let $G_{\kappa}(F^n)$ be the Grassmann variety of k-dimensional subspaces of F^n , where F=R (reals) or C(complexes). Then $V_{\kappa}(F^n) \to G_{\kappa}(F^n)$ with the canonical projection, written ω , is a universal $U_F(k)$ —bundle ([1]), where $U_F(k)$ is the group consisting of all linear transformations $u: F^k \to F^k$ such that $(u(x) \mid u(y)) = (x \mid y)$ for $x, y \in F^k$ and $(x \mid y)$ the inner product on F^k such that

$$x = (x_1, \dots, x_k), y = (y_1, \dots, y_k) \quad (x \mid y) = \sum_{i=1}^k x_i \bar{y}_i$$

Milnor gave a construction of a universal $U_{\kappa}(F)$ -bundle as follows (about 1955). Consider an infinite join

$$E(U_F(k)) = U_F(k) * U_F(k) * \cdots$$

Each element of $E(U_F(k))$ is denoted by

$$\langle t, u \rangle = (t_0 u_0, t_1 u_1, \cdots, t_K u_K, \cdots),$$

where $t_i \in [0, 1]$ and $u_i \in U_F(k)$ such that only a finite number of $t_i \neq 0$ and $\sum_{0 \leq i} t_i = 1$. In $E(U_F(k))$ we define

$$\langle t, u \rangle = \langle t', u' \rangle \Leftrightarrow t_i = t_i'$$
 for each i and $u_i = u_i'$ if $t_i = t_i' + 0$

and

$$E(U_F(k))\times U_F(k) \xrightarrow{\mu} E(U_F(k))$$

by $\langle t, u \rangle x = (t_0 u_0, t_1 u_1, \cdots) x = (t_0 u_0 x, t_1 u_1 x, \cdots)$ for $\langle t, u \rangle \in E(U_F(k))$ and $x \in U_F(k)$. We want to introduce a topology on $E(U_F(k))$ in such a way that $E(U_F(k))$ is a $U_F(k)$ - space.

Define

$$t_i: E(U_F(k)) \rightarrow [0, 1]$$
 and $u_i: t_i^{-1}(0, 1) \rightarrow U_F(k)$

as follows. For each $\langle t, u \rangle = (t_0 u_0, t_1 u_1, \cdots)$

$$t_i(\langle t, u \rangle) = t_i((t_0u_0, t_1u_1, \cdots)) = t_i$$

which is the i-th component of t, and for $\langle t, u \rangle \in L^{-1}(0, 1)$

$$u_i(\langle t, u \rangle) = u_i(\langle t_0 u_0, t_1 u_1, \cdots \rangle) = u_i$$

which is the i-th component of u, It follows that

$$u_i(ax) = u_i(a)x, t_i(ax) = t_i(a)$$

for $a \in E(U_F(k))$ and $x \in U_F(k)$.

The set $E(U_F(k))$ is made into a space by requiring it to have the smallest topology such that the functions t_i and u_i are continuous for all $i=0,1,2,\cdots$. Then by the commutative diagrams

$$t_{\bar{i}}(0,1) \times U_F(k) \longrightarrow t_{\bar{i}}(0,1) \qquad E(U_F(k)) \times U_F(k) \longrightarrow E(U_F(k))$$

$$u_i \times 1 \downarrow \qquad \downarrow u_i \qquad P_1 \downarrow \qquad \downarrow t_i$$

$$U_F(k) \times U_F(k) \longrightarrow U_F(k) \qquad E(U_F(k)) \longrightarrow [0,1]$$

 μ is continuous, where is the product operator of $U_F(k)$ and p_1 is the projection on the first argument. Therefore $E(U_F(k))$ is a $U_F(k)$ -space. We denote the quotient space $E(U_F(k)) \mod U_F(F)$ by $B(U_F(k))$. Then $E(U_F(k)) \rightarrow B(U_F(k))$ with the canonical projection, written $\omega(U_F(k))$, is a universal $U_F(k)$ -bundle ((1)).

In this paper, we shall make a $U_F(k)$ -bundle morphism from ω to ω $(U_F(k))$ (Theorem 5) and prove its property (Proposition 6)

As is well known, $G_{\kappa}(F^n)$ is a finite CW-complex ([2]), and thus it is compact. Moreover, the direct limit $G_{\kappa}(F^{\infty})$ of the sequence $G_{\kappa}(F^n) \subset G_{\kappa}(F^{m+1}) \cdots$ of compact space is paracompact ([2]).

We know that the projection $p: V_k(F^n) \to G_k(F^n)$ is locally trivial. For each subset of k elements $H \subset \{1, 2, \dots, n\}$, we define O_H to be the open set $O(F_H)$, where

- (i) $F_{H} = \sum_{t \in H} F_{e_{t}} \cong F^{*} \subset F^{n}$ ((e₁, ···e_n) is the usual orthonormal base of F^{n}),
- (ii) $O(F_H) = \{ W \in G_K(F^n) \mid W \text{ is not orthogonal to } F_H \}.$

Then O_H is a locally trivialization domain ([1]), i. e., there exists a homeomorphion $h_H: O_H \times U_F(k) \longrightarrow p^{-1}(O_H)$ such that the diagram

$$O_H \times U_F(k)$$
 $p^{-1} (O_H)$

is commutative, and

(iii) For each point $W \in O_H$, $h_H \mid W \times U_F(k)$ is a $U_F(k)$ -map, i. e., $h_H(W \times xy) = (h_H(W \times x)) y$

for $x, y \in U_F(k)$.

Definition 1. An open covering $\{U_t\}_{t\in S}$ of a topological space B is numer -

able if there exists a locally finite partition of unity $\{\psi_i\}_{i \in s}$ such that $\varphi_i^{-1}(0, 1) \subset U_i$ for each $i \in S$. A principal G-bundles \mathcal{E} over a space B is numerable provided a numerable cover $\{U_i\}_{i \in s}$ of B such that $\mathcal{E} | U_i$ is trivial for all $i \in S$, where G is a topological group.

Proposition 2. $p: V_k(F^n) \to G_k(F^n)$ is a numerable $U_F(k)$ -bundle.

Proof) By the description above $\{O_H\}_{H\subset\{1,2,\dots n\}}$ is a finite open covering of $G_K(F^n)$ such that $V_K(F^n)\mid O_H$ is trivial. Hence there is a partition of unity $\{\varphi_H\}_{H\subset\{1,2,\dots n\}}$ such that $\varphi_H^{-1}(0,1)\subset O_H$. This implies that $p:V_K(F^n)\to G_K(F^n)$ is numerable. $q_L\in A$.

Lemma 3. There is a $U_F(k)$ -map from $V_K(F^{mk})$ to the join $E(U_F(k)) \text{ (mk)} = U_F(k) * \cdots * U_F(k) \text{ (mkCk-times)}.$

Proof) We order $\{O_H\}_{H\subset\{1,\dots,m_k\}}$ as $\{O_0,\dots,O_q\}$ $(q=_{m_k}C_k-1)$. Let $h_n:O_n\times U_F(k)\to V_K(F^{m_k})\mid O_n$ be an isomorphism defining the locally trivial character of $p:V_K(F^{m_k})\to G_K(F^{m_k})$, and let $\{\varphi_i\}_{i=0},\dots q$ be a partition of unity of $\{O_i\}_{i=0}$, ...q. We define $g:V_K(F^{m_k})\to E(U_F(k))(m_k)$ by the relation

$$\mathbf{g}(\mathbf{z}) = (\varphi_0(\mathbf{p}(\mathbf{z})) \quad \mathbf{p}_0(\mathbf{h}_0^{-1}(\mathbf{z})), \quad \cdots, \quad \varphi_0(\mathbf{p}(\mathbf{z})) \quad \mathbf{p}_q(\mathbf{h}_0^{-1}(\mathbf{z})),$$

where $z \in V_k$ (F^{mk}) and $p_n : O_n \times U_F(k) \to U_F(k)$ is the projection on the second argument. We have to note that if $h_n^{-1}(z)$ is undefined then $\varphi_n(p(z)) = 0$. By our definition and the condition (iii) above $(i.e, h_n(za) = h_n^{-1}(z)a$ for $z \in V_k(F^{mk})$ and $a \in U_F(k)$, for each $a \in U_F(k)$ g(za) = g(z)a, and thus g is well defined (Note that $\sum_{k=0}^{q} \varphi_k(p(z)) = 1$). Since g is continuous, g is a reguired $U_F(k)$ -map. q. e. d.

Corollary 4. Let $B(U_F(k))(mk)$ be the quotient $E(U_F(k))(mk) \mod U_F(k)$. Then there is a $U_F(k)$ -bundle morphism (g, f) satisfying the commutative diagram

$$V_{k}(F^{mk})$$
 g $E(U_{F}(k))(mk)$

$$\downarrow \widehat{p}$$

$$G_{k}(F^{mk})$$
 f $B(U_{F}(k))(mk)$,

where \widetilde{p} is the bundle projection.

Proof) It suffices to define a continuous function f. For each $W \in G_k$ (F^{mk}) we define such that

$$f(W) = \widetilde{p} \cdot g \cdot p^{-1} (W).$$

Then, since p and \widetilde{p} are projections and g is continuous, f is continuous. Also, $p \cdot f = \widetilde{p} \cdot g$ hold. $q \cdot e \cdot d$.

Theorem 5. There is a $U_F(k)$ -bundle morphism $(g, f) : \omega \to \omega(U_F(k))$.

Proof) By the description above $G_k(F^\infty)$ is a paracompact space. Since p: $V_k(F^\infty) \to G_k(F^\infty)$ is a locally trivial principal $U_F(k)$ -bundle $\omega = (V_k(F^\infty), p, G_k(F^\infty))$ is numerable ([1]). Therefore there exists a countable partition of unity $\{\varphi_i\}_{0 \le i}$ such that $V_k(F^\infty) \mid \varphi_i^{-1}(0,1)$ is trivial for all $i=0,1,2,\cdots$ ([1]).

$$g: V_{\kappa}(F^{\infty}) \to E(U_{F}(k))$$
 is defined by
$$g(z) = (\varphi_{0}(p(z)) \quad p_{0}(h_{0}^{-1}(z)), \dots, \varphi_{\kappa}(p(z))$$
$$p_{\kappa}(h_{\kappa}^{-1}(z), \dots),$$

where $O_n = \varphi_n^{-1}(0, 1)$, $h_n: O_n \times U_F(k) \to p^{-1}(O_n)$ is an isomorphism defining the locally trivial character of ω and $p_n: O_n \times U_F(k) \to U_F(k)$ is the projection on the second argument. As in the proof of Lemma 3 g is well defined. By the commutative diagram

$$\begin{array}{c|cccc}
V_k(F^{\infty}) & g & E(U_F(k)) \\
p & & & & \widetilde{p} \\
G_k(F^{\infty}) & & f & & B(U_F(k))
\end{array}$$

f is well defined, where \widetilde{p} is the bundle projection. q. e. d.

Proposition 6. If (g_1, f_1) , (g_2, f_2) : $\omega \to \omega(U_F(k))$ are $U_F(k)$ -bundle morphisms, f_1 and f_2 are homotopic.

Proof) Let β be the category consisting of all $U_F(k)$ -bundles over $G_K(F^{\infty})$ and all $U_F(k)$ -bundle morphisms. Then every morphism in β is an isomorphism ((1)). Therefore we have

$$f_1^*(\boldsymbol{\omega}(U_F(k)))\cong V_k(F^{\infty})\cong f^*(\boldsymbol{\omega}(U_F(k)).$$

Since ω ($U_F(k)$ is universal, we have $f_1 \cong f_2$, q, e, d.

References

- 1. D. Husemoller: Fibre Bundles, Springer-Verlag (1975)
- 2. J. W. Milnor and J. D. Stasheff: Charactristic classes, Princeton Univ. Press (1974).

Chonnam University