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| Some Properties on Noetherian Rings

By JONG-YOULL PARK,

§ 1. Introduction

Recently, the theory of Commutative rings is blindingly developed together with
algebraic geometry ([1], [8], (101, [12], [14D).

In particular, t,be‘ concepts of heightg dimension and depth have been’ studied deeply
({21, 3], (41, (91, [13], [15]1). The purpose of thisﬁ paperis to prove ééme properties
on noetherian rings. (Proposition 2,9, Proposition 3. 1, and Proposition 3. 4) and to prove
our main theorems (Theor@ 5.1 and Theorem 5.2) which say that for a noetherian
local ring(A,#), a finite A-module M we have |

Proj. dim(M)+depth(M) = depth(A)
and for a Cohen~Mabauiay A-module M and a element pEAss(M) we have
Proj. dim(M) = rt(p).

In details, we shall describe definitions of concepts which are used throughout this
paper in section §2, and also prove Propésititm 2.9 with respect to minimal homomor-
phisms. In section §3, we shall prove two propositions with respeéct to depths and
dimensions (Proposition 3. 1 and Proposition 3.4). In section §4, we shall define Cohen-
Macaulay module and show that some properties on.the dimension and: depths.

Finally, in section §5, main theorems of this paper (Theorem 5,1, Theorem 5.2)
will ‘be 'proved, '

§ 2. Preliminaries

Throughout this paper, all rings are commutative ring with identity. Let A be a ring.
By a finite A-module B we mean that B is a finitely generated A-module.
Definition 2.1 Let p: A—B be a ring homomorphism. If B is flat as an A-module
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then ¢ is called a flat homomorphism.
For a ring homomorphism ¢:A—B, there is the natural map ‘p: Spec(B)—Spec(A),
where for each element pesSpec(B),

‘()= (P)=pNA.
Lemma 2.2 Let ¢:A—B be a ring homomorphism. Then the following are equivalent.

(i) ¢ is a flat homomorphism.
(ii) For each p&Spec(B), Bp is flat over Ap, where p=pNA
Proof. Let us note the following facts. ‘
(a) For a ring homomorphism ¢: A—B and a flat A-module M, M(‘a)"-:M@JB is flat
over B. ‘
(b) If S is a multiplicative subset of A, then S'A is a flat A-module.
() For a flat ring homomorphism ¢: A—B, a flat B-module is flat o A,
@ = (b
Consider the canonical ring homomorphism A—A, Since A is a flat A-module, by
(a) BRu4Ap=Bp is flat over A, Therefore, the canonical homomorphism A,ﬁ‘-Bp is a flat
homomorphism. Since p is a prime ideal of B, it is also a prime ideal of Bp, by (i:v) (By)r
=Bp is a flat Bymodule. Sincedy—Bp is flat, (it follows from (c) that Bp:is a flat Ay
module. ‘
() = @
In general, for a ring homomorphism A—B, wlﬁch p is an ideal of B, p=p A and an
A-module N we have | k '
(TorA(B, N))p=Tor 4»(Bp, Np) (s=1,2, ---) ([10]).
By our assumption,
Tor **(Bp, Np) =0
So that Bp is a flat Aymodule. Therefore, for all maximal ideals p of B and for all
A-module N,
Tor *(Bp, Np)=(Tor *(B, N))p=0
This implies that
TorA=(B,N)=0
for all A-module N({11). And thus B is flat over A.
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Lemma 2.3 If © : A—B is a flat homomorphism, then the going-down theorem holds

for ¢.

Proof. Suppose p’ and p are prime ideals of A with p’Cp.

Assume that p is a prime ideal of B lying over p. By Lemma 2.2, Bp is flat over Ap.
Moreover pBp contains the image of pAp under the canonical ring homomorphism Ap—Ap,
where Ap and Bp are local rings. Bp is a faithfully flat Aymodule, :

Hence Spec(Bp)—Spec(Ap) is surjective. Since p’Apis a prime ideal of Ay, there is a
prime ideal p’* of Bp which is lying over p’4,. If we put p’=p'*\B, then p’ is a prime
ideal of B lying over p’ which is contained in p.

Definition 2.4 Let A be a noetherian ring and M an A-module.

A prime ideal p of A is called by an associated prime of M if there is a submodule of
M which is isomorphic to A/p as A-modules.

The set of all associated primes of M is denoted by Ass«(MD (or by Ass(M)).

Definition 2.5 For a ring A(0), 2 finite sequence of #-+1 prime ideals oD
Dp, is said to be a prime chain of length n.
For each prime ideal p, the height At(p) of p is defined by

ht(p)=mazx nlp=pOpiD--DOp. is a prime chain)
n

Therefore, At(p)=0 iff p is a minimal prime ideal of A.
For each proper ideal / of A, we define At(})

w(D=_ inf {kt ()}
ICpeSpec(A)

The dimension of 4 (or Kruil dimension of A) is defined by

dim(A)=sup ()]
pe=Spec(A)

Therefore, the dimension of every principal ideal domain always zero or: one,
Let M be an A-module. The dimension of M is defined by
dim(M) = dim( A/ Ann(M)),
where Amm(M) = lacsAlaM=0) .

Lemma 2.6 Let A(30) be a ring. Then the following hold.
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(1) For each pezSpec(A), ht(p)=dim(Ap).
(ii) For an ideal I of A

dim(A/D+ht (D sdim(A).

Definition 2.7 Let A bea ring and let M bz an A-module. An element ‘@€ A is said to

be M—regd!ar if
ar M——>M(m ro~n~sam)
is injective.

A sequence {a), 8:, ,,, a} of elements of 4 is called an M-regulaf sequence if for
each ((181<r), a, is M/(aM+ ,,, +a,-:M)-regular. Let {a), a,, ,,, ‘a,l be an M-regular
sequence and let 7 be an ideal of A. If each a;(15¢$r) is in I, then la, @2, ,,, a) is
called an M-regular sequence in I. Furthermore, if there is no element <7 such that {a,

@z ,,, a,b} is an M-regular sequence in I, then {ai, a,,,,,a,] is called a maximal M-
regular sequence tn I,

When A is noetherian, for an ideal 7 of 4 and a finite A-module M, depthi(M) is
defined by the length of a maximal M-regular sequence in I.

Let (A,44) be a noetherian local ring with its maximal ideal M.

Then we write depth(M) or deptha(M) for depthw(M).

The following are clear;
If A is noetherian and M is a finite A-module, then
(i) If el is an M-regular element, then
depth; (M/aM) = depth: (M)~ 1
(i) If (A, ) is a local ring, depthm(M) =0 iff < Ass(M).
(iii) For euch p&Spec(A),
depth(My,) =0 as-Aymodule itf pApEAss (M) iff pes Ass(MD).
(iv) For each pe=Spec(A),
depth(Mp) as Apmodulezdepth, (M),

Definition 2.8 Let (A4,m,k) be a local ring, where k=A/#. Let M and N be finite
A-modules. :
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A homomorphism u: M—N is said to be minimal if u@J, ; M@sk—»NRik is an
isomorphism.
Proposition 2.9 Let (A,#, k) be a noetherian local ring. Then the following hold. -
) The following statements (a) and (b) are equivalent:
(a) M is free.
(b) Tor*(k, M) =0.
(i) Let M and N be finite' A-modules. Then a homomorphism #: M—N "is minimal
iff # is surjective and ker(u)CwwM.
(iii) For each finite A-module M, there exists a minimal homomorphism u: M—F,

where F is Free,

(iv) Let 0—+K-“FSM-0 be -an exact sequence of A wmodules. If M is a finite A-
module, ¥ is a minimel homomorphism and F and X are free A-modules, then the
homomorphism '

v*: Exta'(k, M)—Exts(k, F) (=0,1,,,,)
induced by v is zero,
Proof. (i) (a)=>(b): Since any free A-module is flat over: A, we have Tor*(k, M) =0
(b)=>(a): Since M/MM=MQak is a vector space over k, there is a base (%, ,,,%.)
of M/mM. Let n: M—MmM be the canonical projection, and let x’ be an element of
M such that ‘

ﬂ(x;/);:—f‘ far ;.‘”: 1) 2: a:)"~

Then x/=x,+am,; ({=1,2,,,,n)
where @,&m and m&M. And {x/’, ,,,x’] generates M. We define a free A-module
F which is generated by {el,,,e.]., and an A*homqmoxghism fiF—-M by f(2,)=x/. Put
K=ker [ v
Then we have an exact sequence
0K+ F—M—0 :
of A-modules. Therefore, we have the following long exact sequence
e os TorCh, M)~ KQ k- PRk MRak—0
By our assumption Tor,A(k, M) =0, and we have the following exact sequence
0 KR 4k FR sk~ M 1k—0
By our definition of F and f,
— 4 -
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JRL;: FRubk—MRDak -
is an isomorphism. Since
dim, (FRak) = dim, (M k) =n
Thus, KQk=0, that is, K@ik=K/mK=0. Since this implies that K=mK, by the
Nakayama’s Lemma we have K=0. Therefore F=ZM and thus M is a free A-module.
(ii) Suppose that # is a minimal homomorphism. Then we have u@J: MmM— NN
is an isomorphism and the diagram
M —2—> N
l i

M/t E8 N S

is commutative,
As in the proof of (1), w@L(x+mdM)=ulx)+4wN far all. =M, u is clearly surjective,
Since ker(u@I) = [x-+mM|u(x)+MmN=0] =0, it is clear that ker(u)CWM.
Conversely, assume that % is surjective and ker(s)CaaM, Then u®I, is surjective,
We shall claim that ker(¥®1,)=0. Suppose ker(u@I,)F0.
Then x+wmM=£0 such that le»mMEEker(u@I.).
Since ker(u) WM, x& ker(s).
Thus #(x)+0. And u(x)+mN=0, x(x)SwmN.
This is a contradiction.
(iii) Since M is a finite A-module, there is a minimal set {x;, :--x,} which generates
M. Let F be a free A-module with a free basis le;, -:-e,}]. Then the homolnorphism
o1 F-M (p(e)=x)
induces an isomorphism
F/anF = M/wmM
Since  dim, (FmmF) =dim,(M/mdl) =n,
Therefore ¢ is a minimal homomorphism.,
(iv) Since u is a minimal homomorphism, ker(¥)CwF by (ii).
The exact sequence implies that K=“ker(u) and so KCwaF. For any f&Homi(kmF),
and for any a+mecSk we have
F(@&)=f(a+4w) =f(a(1+4)) =af (1 +M)EuF.
So acmm, fla+m)=f(0)=0.
Therefore Homa(k, K)=0.
We can take injective resolutions of K, F and M respectively as the below diagrams:
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0 0 0
1 » ! “ !

0 — K » F > M =0
Ldo 1 !

0 = Jo —2s Ji —= Jo" — 0
{dy l {

T 2 > Ji! 5 y J¥ —~— 0
\d;
Iz

where the vertical sequence are injective resolutions.

Applying the covariant functor Hom.u(k, —) above diagram, we can obtain the induced
homomorphism as below:

do* a* , d*
0—— Hom Ck, Ky———— Hom aCk, Jo)———Hom (k, Ji)~—Hom (R, J3)

#. ™ * *
l v % l va dl/“ l ”1

Ors Hom aCh, F)~——— Hom aCk, Jo'Y—— HomaCk, J's)

In case of n=1, we have Ext'a(k, K)=ker d;*/x’m»do*.
We claim that ker d,* < im do*. For any f Homa(k, Jo) such that a*(pH=0, im(f)
Cker(d)=im do. ‘
We can fixed a element &K such that f(1+m) =do(x).
Now we can d:fine a homomorphism f: k—K b§ FO+m)=x
Therefore, f=doof'=do*( [)Eim dy*. So, Erts'(k, K)=0.
Similar arguments yields that Ext.’(k, K)=0 for all n?2.

§ 3. Some Properties of Depths and Dimensions

Proposition 3.1 Let Aand B be noethei-iaa rings. I ¢:A—B is a flat ‘homomorphism,
then for each ideal I of A and a finite A-module M |
depth; (M) = depthi M,
where Iiay=IQu4B and Mn =M 4B.
In particular, if ‘¢: Spec(B)—Spec(A) is surjective then At(1)=Aht(IB).
Proof. Since B is a flat A-module, we have I@BIB which is an ideal of B.
Furthermore, we have »

A/ Iy =A/IQAB=B/I»=B/IB.

47
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The first part of our assertion is ascribe to the following two lemmas.

Lemma 3.2 Let 91 A—B be a flat homomorphism with A noetherian, For each finite
A-module M the following holds.
Extd'(M, N)®4B= Exts' (M, Newy) (G=0,1,2. )
where N is an A-module,

Proof. Since M is an finite A-module, there is a projective resolution

Xy ---—*X,jLX.-r* —-»X;fLXoﬂMﬂo
of the A-module M, where each X,(s=0, 1,:) is {inite free A-module.
Let X;=AD DA (r-times), Then, the following holds ([7)). |
Homy (X,Q4B, NQuB)=Homs(B, NQB)+ -+ + Homs(B, NQ 4B)
Z=NR B - DNR B
On the other hand, '
Honu(X,, N)® B (Hom (A, N)®- @ Hom (A, N))Q4B
Z(NP-BN)QB
=NQ.B®- ONQB
In consequence,
of it Homs(X,@4B, NQaB)— Homi(X:, N)Q4B

is an isomorphism and the following diagram

0— Homs(Xa®4B, N@.B)-1 By, QL) oy X, @.B, NQuB)—

0—s Hom a(Xo, I® 1B T 1L, o 5 N)@ uB—s

is commutative. _
Since each X.®.B is isomorphic to a direct sum of 7 copies of B, clealy X,QuB is a
projective B-module,
Furthermore, since B is a flat A-module, the sequence
Xe@uB: =X, QuB~ > Xe@aB—MRB—0
is exact, That is, X.®«B is a projective resolution of the B-moduie ME4B. In
consequence, we have
ExtA4 (M, New)=Exts(M, N)QB
Jor i=0,1,2, -
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Lemma 3.3 Let A be a noetherian ring. For a finite A‘module M, an ides) I of A
and an integer #>0, the following are equivalent
(i) Extd(A/L, M)=0 for any i<nm.
(ii) There exists an M-regular sequence {q, az, *-a.} of length » in I.
Proof. (D) Since Ext?(A/L M)=0, we have |
Hom(A/T, M) =0.
Assume that every element of I is not an M-regular element,

Then IC GH”(M) and thus there exists an element pAss(M) such that IC:p, By
Definition 2.4 A/pis isomorphic to a submodule of M, that is, there is a monomorphim
A/p—M. Since ICp, there exists the canonical projection A/I—A/p. Therefore, the
composition
A/I——A/p—M
is not a zero homomorphism. This implies that Homi(A/I, M)+0 and thus we get a
contradiction. Hence, there is a M-regular element g, in /.
We put Mi=M/a.M, then =

0——s ML M My ——0
is a short exact sequence of A-modules.
Since Extd'(A/1, M) =0 (0Si<n), from the long. cohomology exact sequence
= Extd ' (A/L, M)—~Extd" (A/], M)—Exta "' (A/L, M)~ Extd (A/T, M)~
we get Extd(A/L,M)=0 for i<n—1. By repeating the above argument we get an
M -regular element a; in 1. Therefore, (@, a:} is an M- reqular sequence, and Extd (A/I
M:)=0 for i<n—2, where
My=M/aM+ a:M.
By using this method continucusly, we see that there exists an M-regular sequence {a:,
@1, ,-i}, and Ext(A/L M, )=0, where
M,.,=M/aiM+---+a,., M,
Therefore, by the same reason as sbove, there exists an M,..-regular element a, in I
and thus (a1, @, --a,} is an M-regular sequence in I.
(ii)=(i) we shall put
M=M/aM+-+a,..M



10 ' Joug Youll Park
Then, from the short exact sequence

O*DM.-I“"*M -1——'M-""""‘0
we- get the injection

Ot Hom uC A/, My i3 22 om 4CA/T, My, |
where a,* is induced by a.. That is, for each f&Hom.(A/I, M..;) and [aIEA/I, a*
(f(la)))=£([a,a]). Since a6, we have [a,4]1=0 in A/I and thus a,* is a zero
homomorphism.
It follows that Hom(A/I, M,-)) = Ext.(A/L M, ) =0

From the short exact sequence

0—sM, 222 M, —s M, ..——0

we get the long exact sequence

0—— Hom(A/I, M.~:)--'HMA(A/I M‘.-;)--—-vb’oma(dlf M, )—

o Bt AL IM, ) S Bt 0 CAJT Mo

By the same reason as above we obtain
HomCA/L M, 2)=Ext*(A/L M,.»)=0,
Since,
Homa(A/L M, - Y=Et (AL M,-)=0
" we have the exac¢t sequence

y-1*

0— Extat(A/], M.-:)—-—-*’Exta‘(il/[ M,.:)

Now we take an injective resolution

0"“‘"'M.-:"'"’Io'§l‘f e
of M.-s. Then

Ext..‘(A/I M,.») ==Iwr(Hom(1m, 81))/M(Hm(1m. Bu))
where

Hom 4(14,1,8)): Homa(A/I I)—Homi(A/L L)
and . s

Homa(la,,8): Howa( A/l I)— HomaCA/L L.
Therefore, for each element [flEExt(A/I, M,.s), we see that fe&Homa(A/L 1), For
each [al€A/], Since a,-1(f(a)) =f(8,-18) =f(0), 6,-16&1, and thus Ext.(A/I M,-;)=0.
p— 50 —
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We assume that
Exto(A/LM, . )== Ext/""(A/M,-)=0
for i (2<i<n~1).
Then the short exact sequence

0""*’M,~g-1£1:‘1M.—1-1*“‘*M.-¢—"—'0

implies that

a,-*

0——s Exta'CA/L, My-i-))——Ext' (A1, M, -1) =
is exact. Therefore, we get Exts'(A/], M,-.-1)=0 by the above srgument. Consequently,
we have

Exta'(A/LM)=0

for i=0,1, --n—1,

Proof of the Proposition 3.1 (continued):
Since A/l is a finite A-module, by Lemma 3.2 we have
Extd(A/I, MYQ4B == Exty' (Bt sy, Mcny).
Thus, 'if we can prove that
(%) depthi(M)=n & Exta'(A/], M)=0 for i=0,1,--n~1,
and Exts"(A/I:M)30,
then our first assertion
depth (M) = depthi y,(May)
holds because of that |
Exts'(A/], MY®.B=0 & Exts'(A/I, M)=0 by 1EB.
In order to prove (») we shall use mathematical induction on 7, If there is no
M-reguar element in 7, then
Homi(A/L M) = Exto(A/L MF0
as in the proof of (i)=»(ii) in Lemma 3, 3.
Assume that (+) always holds for all r<s. Let (1, s, 8, be a maximal M-regular
sequence in I, Then {4y, +--a,} is a maximal M)-regular sequence in J, where M,=M/a;M.
By our induction assumption,
Ext ' (A/1, My)+0.
From the following short exact sequence

0——s M-25 My My ——0),

— 5] -
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we get the long exact sequence for Ext
0—Exta"'(A/I, M)—Ext*(A/1, M)y—Ext * CA/T, M)+~
because of that Ext.""'(A/I, M)=0, by Lemma 3.3,
Since Exta"'(A/I, M\)#0, we have
Ext"(A/1, M)3FO0.
Hence (%) holds.

We shall prove the second part of our proposition.

By Lemma 2.3, the going-down theorem holds for the flat homomorphism ¢:A—B.
Therefore, for a p&=Spec(B) and p=p A we have the following holds ([6], [101)

(=) k(p)=ht(p)+h(p/pB).

We take a minimal prime over-ideal p of IB such that At(p)=ht(IB), and put p=pNA.
Then kt(p/pB)=0. By (%) we get ht(p)=ht(p). Since ICp, we have ht(p)2ht(I) and
so k(IB)2ht(l).

Conversely, let p be a minimal prime over-ideal of / such that A(p)=ht(I). We take
a prime p of B lying over p (“p: Spec(B)—Spec(A) is surjective and the going-down
theorem holds for ¢). ’

If necessary, replacing p we may assume that p is a minimal prime over-ideal of pB,
that is, At(p)=Hht(pB). Then, again by (#»), ht(p)=hi(p), and thus

ht(f)=ht(p)=ht(p) 2ht(IB)
Consequently, () =ht(IB).

Proposition 3.4 Let A=K[X;, -X,] be a polynomial ring over a field K.
Then there exists a subring B=K[Y, Y,], Y.€K[X, X)), ¢=1,2n which
satisfies the following conitions: .
(i) A is integral over B,
(i) There is no inclusion relation between prime ideals of A lying over a fixed prime
ideal of B. |
(iii) dim(A)=dim(B). |
Proof. We put Yi=f(X)= 3 aM(X)#0 in K[X, X, -X.), where 0#a,&K and the
M, (X) are distinct monomials in X, - X, such that M,(X)58:X: for any 5, K.
For n positive integers 41=1, d;, -*-d, and a monomial M(X)=I1X;* the positive integer

Y a,d; is called the weight of M(X), By a suitable choice of 4y, :+'d,, weican make that

— 52 —
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no ‘two of the monomials: Mi, - M, in f{X) have the same weight ({12]). 1f we put

Vi=X,~ X4, (1=2,3,-m
then X;=Y,+ X.d\, and thus

Yi=f D =X, Yot X4, - Y. X"

=a;X\'+g(Xy, Yy, -, V),

where g is a polynomal over K whose degree in X is less than ¢ and a; is the coefficient
of the term which has the highest weight in f(X). Then we have

X'+ 1/a(gX,, Yo', YO~ Y1} =0
This implies that X, is integral over K[Y), ---Y,). Since

Xi=Y+X#* (§=2,3n)
we see that X, <X, are integral over K[V, --Y,]. Consequently, A=K[X X, is
integral over K[Y\, -, Y,]. Moreover, since Xi&K[Y), -, ¥,] it follows that KLY, -, Ya)
is a proper subring of A. If we put B=K(Yi,¥,] then (i) holds for 4 and B.

We shall prove ghat A and B satisfy our condiﬁon (ii). In order to d;o phig we need
the following (11, (8], (10] and [121). ‘

(#x%) Let B be a subring of a ring A such that

A is integral over B. If Bis a loeni ring and p is the maximal ideal of B, | then the

prime ideals of A lying over p are precisely the maximal ideals of A. 4

Since A s integral over B. for each p&Spec(B) Ay= A®:B,=(B~p)~'A is integral over
B, and B,is contained as a subring. Moreover the prime ideals of A lying over p
correspond to the prime ideals of Ay lying over pBp which are the maximal ideals of A
by (wes), | ‘ |

Since B30, A, is not zero and it has maximal ideals. For two maximai idealssw and
wh: of A, there is no inclusion relation between () A andm-1 A, which are prime ideals
of A lying over p Hence condition (ii) is true for A and B. Note that Spec(A)—Spec(B)
is surjective, ‘

Let us prove that dim(A)=dim(B). At first, we shall prove:that the going-up theorem
holds for BCA. We take pCp’ in Spec(B) and p in Spec(A4) such that p\B=p. Then
A/p is integral over B/p and it contains B/p as a subring.

Since Spec(A)—Spec(B) is surjective it also follows that Spec(A/p)—Spec(B/p) is

surjective,
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Therefore there exists a prime p’/p lying over p’/p. Then p’ is e prime ideal of A4 lying
over p’ and thus the going-up theorem holds for BC A,

Next, we have to note that B=K[Y,, Y, -Y,] is a noetherian subring of A=K[X,,
-+, X,] which is also a noetherian ring. We shall take p,Cp, in Spec(4). Then by (iD)
there is no inclusion ralation between p (1B and p(}B; in Spec(B). Thia’ implies that dim
(A)&dim(B). By the going-up theorem, for pCp’ in Spec(B) there exist p and p’ in
Spec(A) such that pCp’, This implies that dim(B)Sdim(4). In consequence, we have
‘dim(A) =dim(B).

§ 4. Some Properties of Cohen-Macaulay modules

Definition 4.1 Let (4,m) be a noetherian local ring. 1f depth(A)=dim(A) or A=0,
then A is called a Cohen-Moacauly ring. A finite A-module M is called o Cohen- Macauly
A-module if depth(M)=dim(M) or M=0. ‘Note that for a non zero finite A-module
M depth(M)Sdim(M) in general.

Lemma 4.2 Let (A,mm) be a noetherian local ring. For a Cohen-Macaulay A-module M
the following hold. : |

(i) For each peAss(MD, dim(A/p)sdaﬂk(m.
(i) For each p&Spcc(A), the Aymodule M, is a Cohen-Macsulay A, module,

Proof. (i) It is well known that | ‘

(a) depth(M)Sdim(A/p) for all pE Ass(M)

(b) Amn(M)= p
pEAss(MD

Therefore we have

depth(M) = dim(M) = dim( A/ Ann(M)) 2dim(A/p) & depth (M). and thus depth(M) =dim
(A/p).

(ii) We want to prove that dim(Mp)=depth(Mp). As well-known the following holds:
(wwen) dim Mp=ht(p/Ann(M)) &depth My 2depthyM.

Step 1. We assume that Amn(M)Cp, Then (Arp) () Awn(M)30 and thus My=0,
Therefore, by Definition 4.1, M, is a Cohen— Macaulay Aymodule.

Step 2: We assume that Asn(M)Cp, we shall prove our assertion by mathemstical
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induction on depth,M.

(a) depthf M) =0. This case imphies that there exists an element ¢ Ass(M) such
that pcq, By (i) every element of Ass(M) is a minimal prime over-idesl of Amn(M).
(See dim(A/Ass(M))=dim(A/p) es in the proof (1)) It follows that p=g, and thus dim
My=ht(p/ Ann(M))=0. By (ww#%) we have dim My=depth(Mp)=0.

(b) depth{M)>0 (M=£0); we shall at first prove that under our assertion if s A
is a M-regular element in s then dim(M/aM)=dim(M)—1 and M/aM is a Cohen-
Macaulay A-module, Since g is an M-regular element Arm(M/aM)iArm(M) and thus
dim(M/aM) <dim(M).

On the other h#nd,
Supp(M/aM) = Supp(MO NV (a) =V (Ann(M)+aA)
where Supp(M) = [peSpec(A) | Mp#0] and
Via)= {pEESpec(A‘)ylbaéEp}
It follows that dim(M/aM) = dim(Amn(M) +aA) Zdim(A/ Amn(M)) — 1= dim(M)— 1, Hence
dim(M/aM)=dim(M)~1, Let -
M,=M/aM.
Then dim(M.)=dim(M)~1. On the other hand by Lemma 3.3, We have depth(M,)=
depth(M) —1. Since M is a Cohen-Macaulay A-module deptth)=dim(M) and thus depth
(M) =dim(M:) =dim(M)~1. That is, M is a Cohen-Macaulay A-module.
In general, for a M-regular sequence (a,"---a} in p, We can prove that M/a, M+ -
+a,M is also a Cohen-Macaulay A-module.
We assume that our assertion holds for depth (M) <» and we shall prove our assertion
when n=depthy (M), 1f depthf(M)=nz%) then there exist an M- regular element a; in p.
Let us put Mi=M/a;M For S=A- p, Since

0~+M—-1'M(e,xact):)0ﬂ3"M——"S"M(exact)
the element a; is an Myregular element in pAp Therefore by the proceding statements
and Lemma 3,3 we have '
dim(M,) p= dim(Mp/ a, Mp) = dim(Mp) — 1,
depth(M)p= depth(Mp) — 1
and that M, is a Cohen-Macaulay A-module,
Since depthpM,=depthpM—1<n and M, is.a Cohen-Macaulay Aymodule. by our inductive
hypothesis (M)), is a Cohen-Macaulay A,module. Therefore we have
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i e dim(Mp)=depth(Mp).
M, is a Cohen-Macaulay Aymodule.

Lemma 4.3 Let (4,m) be a Cohen-Macaulay ring. Then for every proper ideal I, At
(D +dim(A/D=dim(A). »

Proof. Since for a minimal prime p over-ideal of 1

il =ht(p), dim(A/D=dim(A/p)

If our formula holds for every prime ideal then our Lemma is proved completely. Let
p be a prime ideal, and dim (A)=depth (A)=n By Lemma 4.2, Apis a Cohen-Macaulay
ring, and by (i) of Lemma 2.6, we have k

depth(Ap) =dim(Ap) = ht(p)

Let us put At(p)=r, Hence, we can find an A-regular sequence {2, 2} in p by
Lemma 3. 3.

As in the proof of Lemma 4.2, A/(ay, -, a,) is a Cohen-Macaulay ring with dimension
n—r(dim(A/aA)=n—1, dim(A/aA)=dimAi—1=dimA~2, where A=A/aA. By
repeatting dim(A/aiA+ - +a,A)=n—7).

Since p is a minimal prime over ideal of (a), -+, a.) wé have kt(p)=ht((a\, -+, a.)).

Therefore, by (i) of Lemma 4.2, we have

dim(A/p) =depth(A/(as, -, 6,)) =dim(A/(ay, -, 8 ))=n—r
(note that psAss(A/(ay, -+, a,))

§ 5. Main Theorems

Let M be a finite A-module. We define that vthe_ _projective dimension (Proj, dim(M))
of M is the length of shortest projective resolution of M.

Theorem §.1 ;
Let (A,m) be a noetherian local ring and let M(3=0) be a finite 4-module, then
Proj. dim(M) + depth(M) =depth(A).
Proof. If A is a noetherian local ring, we know that
M is fres &= M is projective & M is flat. ([8),[141)
If M is free then depth(M)=depth(A). and Proj. dim(M)=0. - Hence our formula is

clear.
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We will prove our Proposition by mathematical induetion on Prej, dim(M),
Case 1. Proj, dim(M)=1. In this case there exists & projective resolution;

0~ K FX M0
where ¥ is a minimal homomorphism (Definition 2. 8), and F, K are free. We assume that
depth(A)=depth(F) =depth(K)=n. Then. by Lemma 3,3, we have the following:
Exts'Ch, K)=0=Ext.(k, F) (08i<n)
Exta*Ck, K)540, Ext"Ck, F)F0.
where k=A/m., In the long exast sequence

oo Bt Chy )L Bt Ch, F)—Exta'Ch, M)~ Bt by KD ..
we see v*=0 by (iii) of Proposition 2.9. Therefore

Exta'(k, M)=0G<n—1), Ext '(k, M)5F0
Hence, by Lemma 3.3, we have depth(M)tn-—-l
Therefore our formula dolds.

Case 2. Proj. dim(M)>1.
Assume that our formula holds for all finite A-module M(#0) with Proj. dim(M)=r
<n.~Let M be a finite A-module with Proj.dim(M)=r+1 and consider a projective

resolution

6—X, X, -X;ﬁX.—'M—aO
of M. We may regard the exact sequence

0-X, .1 X~ =X~ Imd,—0
a3 a shortest projective resolution of Im di, thatis, Proj.dim(Imd;)=r. By our inductive
hypothesis depth(Imd))=n—r,
Therefore, by Lemma 3.3 we have

Exts(k Im d)=0 GSn—r—1), Exts"(h Im d\)30
Agein, we consider the short exact sequence

0—-Im dy—Xo—M—0
We get

e Exta' (R, Im di)— Exta'(k, Xo)—Exta'Ch, M)—Exta"**(h, Im d)—--
Since Exta'(k, Xo)=0 for i<n we have

Extd" "'k, MY#0, Exta'(h, M)=0 G<n—r—1),
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By Lemma 3.3, we have depth(M)s=n—r~1,
Hence our formula holds for M. '
Now our Proposition holds.

Theorem 5.2.
Let (A,4m)be a Cohen-Macaulay ring and let M(30) be a Cohen-Maeaulay A-module.
Then for every p&Ass(M), we have
ht(p)=Proj. dim(M),
Proof. By Lemma 4.3 we have
BP) + dim(A/p) = dim(A).
By (i) of Lemma 4.2 we have dim(A/p) =depth(M).
Since
Proj. dim(M) + depth(M) =dcpth(A) ‘ ‘
by Proposition 4.4, and dim(A)=depth(A) by our hypothesis, we have the follawing
ht(p) + depth(M) = Prof. dim( M)+ depth(M),
Therefore, we have
At(p)=Proj. dim(M).
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