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Einstein generic submanifolds of an even-dimensional Euclidean space
By U-Hang Ki and Young Ho Kim

§1. Intreduction

Let E®™ be a2 2 m-dimensional Euclidean space and O ‘the origin of a Cartesian
coordinate system in E*" and denote by X the position vector representing apoint

of E?™ with respect to the origin. Since E*™ is even-dimensional, E*™ can be
regarded as a flat Hermitian manifold, and hence there exists a tensor field F of
type (1, 1) with constant' components such that

(1.1) F:=—I, (FX) - FY)=X-Y

for any vectors X and Y, where I denotes the identity transformation, a dot the
inner product in the Fuclidean space.

A submanifold M of a Euclidean space E*™® is called a generic (an-anti-holo-
morphic ) submanifold if the normal space T# (M) of M at any point P&M is al-
ways mapped into the tangent space T »(M) under the action of the almost com-
plex structure tensor F of the ambient space E*™ thatis, FT} M) C T,.(M) for
all PEM (see [2], (3], (5] and (9)).

The f-structure induced on the generic submanifold M of E?™ is said to be nor-
mal if the second fundamental tensors of M and the f-structure conﬁt;te. (r21,
(4)).

On the other hand, Pak and one of the present authors [2] studied generic

submanifolds of an even-dimensional Euclidean space and proved the following:

Theorem A. Let M be an n-dimensional complete generic submanifold with
flat normal connction of a 2 m-dimensional Euclidean space E*™, If the [-struc-
ture induced on M is normal and the mean curvature vector is parallel in the
normal bundle, then M is a sphere S"(r) of dimension n, on n-dimensional
plane E® (CE™), a pythagorean product of the from
(1.2) S (7)) X X8 (r4), pr, -, PvZ1, Pt " Pu=n, 1<N=2m-—n,
(1.3) 8% (1)) X+ X8 (ry) XE?, P1, -, Pn, P21, Pi*Py+P=p,
1<N=2m—n, where S*(r) is a p~dimensional sphere with radiug r>0, E?
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a p-dimensional plane. If M is a pythagorean product of the form (1.2) or
(1. 3), then M is of essential codimension N.

The purpose of the present paper is to explore some characterizations of Ein-
stein generic submanifolds with flat normal connection of an even-dimensional Eu-

clidean space. Our main results will be proved in § 3.

§ 2. Preliminaries

Lét M be an n-dimensional Riemannian manifold immersed isometrically in  an
even-dimensional Euclidean space E*™ by the mmersion i . M—;E’”‘.
We denote by B the differential of i, that is,
B=di: T, (M) =T:p, (E™)
for each point PEM. A Riemannian metric is induced on M from that of E?*® in
such a way that
(2.1) g (X, Y)=BX - BY
for any vectors X and Y in M.
We denote by N« 2m—n mutually orthogonal unit normals to M. Here, in the
sequel, the indices A, B, C, --- run over the range {n+1,. 2m}.
Throughout this paper we assume that the generic submanifold M is immersed
in an even-dimensional Euclidean space E*™ and W, X, Y and Z are vector fields
in M. Then, by the definition of generic submanifblds, we can put in each coor-
dinate neighborhood
(2.2) FBX =BfX —3 us(X) Na
(2.3) FNa=HBU 4,
where f is a tensor field of type (1, 1) defined on M, wua a‘ 1—form and U, a
vector field associated with us given by g(lUa, X) ==ua (X).
Operating F 1o (2. 2) and (2. 3) respectively, and using (1. 1) and those
equations, we can easily find [2)
- f? ~‘=“I+;m®Um
fUs=0, uaof=0,
us Us) =06 an
8 (X, fY)=g (X, Y)—Zus(X) ua(Y),
which implies f *+4-f= 0. Consequently M admits the so-called f-structure satisfy-
ing f+f=0 (see (6] and (8]).

(2. 4)
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I we put .
(2.5) X, V)=¢ (X, V),
then we can easily verify that

X, v)==F(v, X).

The operator of covariant differentiation with respect to the Riemannian con-
nection in E*™ (resp. M) will be denoted by ¥ (resp. <7). Then the Gauss and
Weingarten formulas are respectively given by
(2.6) {“%x BY =BV yY+h (X, Y),

Vpx N, = ~BH.X +DyN,,
where D denotes the covariant differentiation with respect to the linear cornec-
tion induced in the normal bundle of M. A and H are both called the second fun-
damental tensors of M and are related by ‘
(2.7) h(X, V) - Na=gHaX, Y)= ha(X, Y),
where ha denotes the second fundamental tensors associated with the normal ve-
ctor fields Na, that is,

h{X, V)= ;Iu (X, Y)Na.

For the second fundamental tensor b we define ‘its covariant derivative A by
(2.8)  (9xh) (Y, Z)=Dx (Y, Z))= 1 hs(TxY, Z)+hs(Y,Vy2)}Na

Now, differentiating (2. 2) and (2. 3 ) covariantly along M respectively and

using (2.6 ) and (2. 8), we find (2]

(2.9) (Zy I X= ZA’“ (Y, X)U,a-—ﬁ;;'m(X)HaY,
(2 B 10) (vy uA)X"‘:hA (Y, fX), VY Ur!‘:TH,HA Y,
(2.11) us(HaY)= us (HsY),

We now define a tensor field S of type (1, 2) given by
(2.12) S—‘=N+Z}dw U,

where N is the Nijenhuis tensor formed with the f-structure f, that is,
N(Y, X) =Y, (X)—fY, fX)—f Y, X+ (Y, X].
When the tensor field S vanishes identically, the f-structure induced on M is
said to be normal (see (2] and (4]).
But, for the generic submanifold M of the Euclidean space E?™, taking account
of (2.9) and (2.10), (2.12) can be written of the form :
S(Y, X) =3 4 (Hof Y—FfHaY)us (X) — Hif X—fHX) us (Y) }.

A
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Thus, we have

Lemma 2. 1([2)). Let M be an n-dimensional generic submanifold of FE
Then the f-siruciure mduced on M is normal if and only if

(2.13) Haf =fHa.
From this, it follows that
(2.14) ha (fX, Y)+ha(X, fY)=0.

In fact, using (2.13), we get
g (HafX, Y)=g (fH4X, Y),
or, using (2.5) and (2. 7),
ha(fX, Y)=F (HsX, Y)=—T (Y, HiX)=—g (fY, HiX)=—hs (X, fY).
Since the ambient manifold is Euclidean, equations of Gauss, Codazzi and Ricci

for M are respectively given by

(2.15) K (X, Y)Zz;{mxm (Y, Z)—ha(X, 2)HAY },
(2.16) (Vyha) (Z, X) — (Vzha) (Y, X)=0,
(2.17) KN(X, Y)NA=§:3([HA, HB]X Y)Ns,

where K and K" are the curvature tensor of M and that of the connection in the
normal bundle, and we have put (Ha, Hs ]=H Hs—HaHa. :
Applying the f—structure f to (2. 13) and using its commutativity, we find
HfX=fHX,
for any vector fixeld X in M, or, using (2.4).
;uB(X) HaUazBZ us(HaX) Us.
Putting X=Uc in the above equation and making use of (2.4), we get

(2.18) HAU(:=§P&«:UB,

where we have put

(2.19) Powc=us(Hsl.),

But, using g(U4 X) =ua(X), we find
' ws(HaUe) =g (HaUc, Un) =g (Uc, Haln) =uc(HaUs)
because H 4 'is the symmetric operator, that ‘is;, P pic is symmetric for the ind-
ices B and C. Since we can see from (2.11) that Pa«w is symmetric for the
indices B and A, Pagac is symmetric for all indices.
If we apply the second fundamental tensor Hy to (2, 18) and use itself, then

we have
32
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(2. 20) HyH.Uc =?§ PoacPeosUs. _
Assuming the conndetion of the normal bundle of M is flat,  that is, K¥(X,Y)
N s=0 for each vector X and Y, or, equivalently HiHz=HsH., (2.20) implies

that

(2.21) ?Pmpmzeszmpus.
for which, we find
(2. 22) ;P”PEDB:—“&ZAPHADPEAB,

where we have put
Pu:AanM.
We now prepare
Lemma 2. 2 ((2)). Let M be a generic submanifold with flat normal comnec-
tion of an even-dimensional Eucldean space. If the f-structure induced on M

satisfies (2 .13), then we have
(2.23) HBHA:gPCBAHc,

(2.24) NV xTrH = x P,
where TrH. denotes the trace of Ha. B

Pmwof) Since (2.18) inplies
haUc, X)zg Prac g Us, X),

for any vector field X, differentiating this covariantly, we find

(vyhA) (Uc, X) +ha (*"fHL Y, X) ”—“—’;ng("fHASY, X) +§a; (VYPBMI) 8 (UB,X)

with the help of (2.10). Taking account of (2.16), the equations of Codazzi,
we get
ha(fHeX, Y)—ha(fHcY, X) = Posc | g (—fHsY, X) +g(fHaX, Y) | +30{ (Vy
Puc)gWUs X) —(Z x Prac) g Us, Y) |,
or, using (2.13) and (2, 14),
(2.25) 2ha(fHcX,Y)=2 ;Pmc g (fHsX, Y) +$ {7 yPousc) g Us, X)—(Vx Paac)
gUs, Y) .
Putting X ==Us in this equetion and taking account of (2. 4) and (2.13), we
find
(2.26) vYPIMczz: (Y up Poac) g Us, Y).
If we substitute this into (2, 25), then we obtain
ha (fH:X, Y) =§Pm g (fH:X, Y),
33



6 U-Hang Ki_ and Young Ho Kim

or, equivalently
g (fHsH X, Y) :;Pmc g{fHsX, Y)
because of (2.13). Consequently, we have
fﬂchXS;PmcfHaX.
Applying the f-structure f to this and using (2. 4), we get
(2.27)  —HiHcX +Fu, (HaH cX)Un=—3 PrcHsX + 3P sicug (Hs X)Us.
Since ;uu (HaHcX)U can be written as
; us (HaHcX) Un-ﬁ;g(H.chX,‘ UB)Uza:;g{)(, HcHAHg)anng:'EPsmea g(X,

Ug)Us because of (2. 7) and (2.18), and ;szue (HeX) Ue as

B;;PBAcg(HBX, UE)UE:EPBAC g (X, HBUE)UE::B‘g. EPaAcppm: g (X, Up)Ups,
(2.27) reduces to

HAHCX:::;PHACHBX :

because of (2.21), which shows that (2,23) is proved. For the proof of (2.
24), see Lemma 2.2 of (2.

§ 3. Some characterizations of Einstein generic submanifolds of an even-
rdimensional Euclidean space

We first prove

Lemma 3. 1. Under the same assumptions as those stated in Lemma 2. 2, we

have
(3.1) ;B(vyp,‘)Pcm (TrHs—Pg) =

for any vector fiedd Y.

Proof) From (2.26), we have

(3. 2) VypA 22 (VUAVPB)“H(Y).
which and (2. 4 ) imply that
(3.3) VJ'YPA"'::‘-O.

Differentiating (3. 2) covariantly and taking account of (2.10), we find
VX Vypazg ((Fx Fu, P )us (Y) 4+ (Vy, Ps) {hs (X, [Y)+us(VxY) 1],
from which, using the Ricci identity,
(3.4) ;{ (VxVu Po)us(Y)— (Vy Vuy,Ps)us(X) + 2 (ZuaPr)bs X, fY)} =0
because of (2.14) and K" (X, Y)=0. Setting Y=U¢, it follows that
VXVUAPC:EB (VU VyPe)us (X),
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from which, we get
Voo VuaFe =Yy, Vy, Po
because of (2, 4). Thus, (3. 4) reduces to
3 (VuPshs(X, fY)=0.
Which implies
& (Vul2)uaPo) b (X, fY) =0,

or, using (2.4) and (3. 3), we have
(3.5) 3 (VzPs) be(X, [Y)=0
for arbitrary vector fields X, Y and Z.

Putting X=fW ‘and using (2. 4), we obtain

3 (VzPs){ b W, Y) —Fu, (Y)he W, Ua) | =0

with the aid of (2. 4), or, equivalently
(3.6) 3 (VzPy) { g HsW, Y) —Zus (V) g (HsW, Ua) t =0.

Let { E\., Ez,+, En}be the set of orthonormal bases of tangent space T
(M) for each point P&M. Then, (3.6) imp}ies that

S5 (YzPy) { g (HaHcEs, E)~Fu, (E0g (HeHcE, Us) § =0,
which means
(3.7) 3 (VzPy){ TPowgHoEw, E) =~ T PoscPeos u, (E)ug (E)t =0
because of (2.18), (2.23) and Ha being the symmetric operator,
Since u, (E:)=g U4, Ei), we can see that

u, (E¢)=Uun,

where we have put UAm;UAlEi. But, gUa4, Us) =64 implies ;U,,U,glzd‘u.

Therefore, (3. 7) reduces to
BZD(VZPB) PBﬂC{ ;g(HDEh Etv) —Pp } == ()
because Pasc is symmetric for all indices. Thus Lemma 3. 1is proved.

If E.,, E:, -, E; are orthonormal vector fields, then we get the Ricei tenser

given by
R(Y, 2) ==;g (K(E:, Y)Z E.),
which implies the scalar curvature

R*=§: R(Et. E().

Taking account of (2.15) and these facts, we have the Ricci tensor and the sc-

alar curvaure respectively of the form :
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(3. 8) R(Y, Z) :g { TrHaha (Y, Z)““¥ﬁn (ELZ)hA (Et, Y) },,
(3.9) R*=;}{(Tri1,)'~rr (H3) 4.

A submanifold M of E*™ is called proper Einstein“if; it éatisfies
(3.10) R (Y;Z)=R"/n g(Y, Z), R*=*0.

We now prove

Theorem 3. 2. Let M be an n-dimensional complete proper Einstein submani -
fold with flat mormal connection of a 2m-dimensional FKuaclidean space E*™. If
the f-structure induced on M is normal, then M is a sphere S"{(r} of dimension
n, a pythagorean product of the form
(*) 8?1 (r) X+ X8 (r), pi, ~'pn are odd numbers = 1, p, =:--=p, Np =n,
1<N=E2m—n, where S (r) is p-dimensional sphere with radius v >0.If M is

a pythagorean product of the form (*), then M is of essential codimension N.

Proof) Since the f-structure induced on M is normql], we see from Lemma 2.1
that Lemma 2. 2 and Lemma 3. 1 are valid. Thus, it follows that

R(Y, Z)=X (TrH. - Py hs (Y, 2)

because of (2.7), (2.23) and (3, 8), which implies
(3.11) ;(TrHr—P,)mY, Z)=R*/n g(¥,2), R*+0

since the submanifold is proper Einstein.
Letting Y=Us and Z=U., and taking account of (2.4),(2.7) and (2.
18), we obtain
3 (TrHs—Py)Pesi=R™ /n Ses

because P s is symmetric for any index.

This together with Lemma 3. 1 gives VxFP,=0 for any vector field X since
R ™+ 0 and hence ZxTrH,= 0 because of (2.24), that is, the mean curvature
vector is parallel in the normal bundle. According to Theorem A and this ’fact,

we have the conclusions of the theorem since M is Einstein.

Lemma 3. 3. Let M be an n-dimensional generic submenifold with flat iormal
connection of a 2 m~dimensional Euclidean space E®*™ If the f-structure in-
duced on M is normal, then the scalar curvature R* of M is zero if and only
if Mis locally Euclidean .
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Proof) Taking account of (2.23), (3.9) becomes
(3.12) R*=3 (TrHi—Pa) TrH..

We now compute the square of the length of As— 3 Pascu, &u,. If E., E.,
B C .

-+, En are local orthonormal vector fields, then we get

” ha— EPBL‘AMB@uC “z 2—*2;{ hA(Et, E;)‘—zp;zcnuﬂ(Ez)uc(EJ) } { ha (Et,
8,.C LR B¢

E,)“DXEPumuD (Edu, E,) t

agg U ha(Ey E)ha(Es, EN)~—2 ?;cpmu, (EQuc(E)halE E)}+ :E P gca

BC, D, E

Posiu, (E )u, (Es)u, (Edu, (E)) }.

Since we have already shown in the proof of Lemma 3. 1 that ;',uﬁ (Edu,
(Ei)=8a and Us=3UnE:, the above equation can be deformed as follows:
H
(3.13) | hA*;;E;PBCA s Kue | 2:;‘2g(HAHAE§, E.) — 22..; ;S.;.PBCA gHAE., E))
UBIUCJ + B% AP”CAH!CA
=3 PsTrHa— 2 3.Pscs gHaUs, Uc)+ 5 PscPres
A B, € B C, A
SEPATTHA"“ BZ APBCAPBCA’Z; (TrH 4 *‘“Pa) P
A A :
with the help of (2.18), (2.21), (2.23) and the symmetric character of P,

Therefore, we see from (3. 12) and (3.13) that
R*= || TrHs—Pal* + | ha— ZPacs 4, ®u I *.
If the scalar curvature R™ is zero, then we have
(3.14) TrH.s=P. and ha"——'!g;j Prea u, Qu,.
Substituting the second relationship of (3.14) into (2.15), we get

g KX Nz W)=2 {ha (X, W)hatY, Z)—ha (X, Z2)ha(Y, W) |
= 3 . (Paca P oea— PreaPoca) u, (X)u, (W) u, (Y)u, (2),

Slens
or, using (2.21),

g KX V)Z W)=0, ,
that is, K(X, Y) Z=0. Consequently, M is locally Euclidean. Conversely, if M

is locally Euclidean, then the scalar curvature R™* of M is clearly zero.

Finally we prove

Theorem 3. 4. Let M be an n-dimensional complete locally irreducible ge-
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neric submanifold with flat normal connection of a 2Zm-dimensional Euclidean
space E*™. If the f-structure induced on M is normal and the square of the
length of the Ricci tensor is constant, them M is of the same Iype as those

stated in Theorem 3.2 .

Proof) From our assumptions (2. 1)~ (3. 9) are valid. Setting W=E, and
Y=E,; in (3. 6), and summing with respect to i.(i== 1, 2, n), we have

; (vaa) (TrHB ——Pa) == () ’

where { E., Ea, -, En}is the set of orthonormal vector fields, from which,
taking account of (2.24),
(3.15) > (VZTTHA)(TfHA”PA)=0.<

A
If we use (2.7) and (2.23), then (3.8) and (3. 9) becomes respecti-
vely

(3.16) R(Y, 2= (TrHa—P ) ha (Y, 2)
and
(3.17) R*==;TTHA (TrH.—P.4).

Differentiating (3.17) covariantly and using (2.24) and (3.15), we sce that
the scalar curvature R™ is constant on M.
From the Ricci identity and the fact that the normal connection "is flat, the
following identity is induced:
(Vx Ty Tha) (Z, W)~ (Ty Tyhs) (Z, W)= (Tix.ppha) (2, W) —h, (K(X, V)
Z, W) —h, (Z, K (X, W),
which implies

3 (VE, Vehi) X V) =y Oy TrHa=R (X, Hi¥) =Zh K (E., V) X, E0)

with the aid of (2.16). Substituting (2,15) and (3.16) into the right hand
side of this, and using (2.22) and (2.23), we obtain
(3.18) ?:(VE, VE ha) X, Y) —Vx Ty TrH=0.

Operaiing Zv&vs to (3.16) and making use of (2.24), we find
i i
3 (Ve VER) X, V)=3 (TrHi—P4) Wy 7y TrH,
which becomes

;’: (Vg, Vg R) (X, Y)=Vx VyR*

38
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because of (2.24) and (3.17). Since the scalar curvature R* is. constant

on M, it follows that

(3.19) T (Ve VER) (X, V)=0.

Theréfore, the identity ©

(3.20) -%—A fRY? u‘;k {(Vg, Vg R) (Es, F) }R(E,, Ex)+ || YR ||?

nde

gives R = .0 because of (3 .19) and the assumption that | R || ? is constant,
where & is the Laplacian given by &a=3] Vg, Vg, . Hence we have
3

RX, Y)=R*/ng(X Y)
since M is locally irreducible. But, Lemma 3. 3 shows that the scalar curva-
ture R™ cannot be zero. Thus, the submanifold M is proper Einstein. After

all M is of the same type as those stated in Theorem 3. 2.

Replacing the condition || R [ ? ==constant in Theorem 3. 4 by the compact-
ness, we have from (3.19) and (3.20) that the Ricci tensor is paraliel.

Thus, according to Theorem 3, 4, we have

" Corollary 3. 5. Let M be an n-dimensional compact locally irreducivle generic
submanifold with flat normal connection of a 2 m-dimensional Eucldean space
E*™ . If the f-structure induced on M is normal, then M is e spﬁere S*{r) of
dimension n or a pythagorean product of the form

S# (r) X+ X 877 (), 1, -, py are odd numbers= 1, pi=--=p,, NP=n,

1<N=s 2m-n,

where S?(r) is a p-dimensional sphere with radius v>0. If M is a py-

thagorean product of the form above, then M is of essential codimension N.

Kyungpook University
Taegu,
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