A note on Thom isomorphism in k-Theory

By Yong Woon Kim, Kee An Lee

Throughout this paper we assume that every vector bundle is a C-vector bundle (each fiber is a C-vector space, C is the field of complexes). Let G be a finite abelian group. For a left G-space X a G-vector bundle over X is given a vector bundle E satisfying the following conditions:

- (i) E is a left G-space with $\theta: G \times E \rightarrow E$.
- (ii) the diagram

$$G \times E \qquad \qquad F$$

$$1 \ _{G} \times \pi \qquad \qquad X$$

is commutative,

(iii)
$$E_x \to E_{ex}$$
 $(e \mapsto \theta(ge))$ is a C-linear for $x \in X$ and $g \in G$.

The purpose of this paper is to prove the Thom isomorphism theorem with respect to complex k-theory of G-bundle (Theorem 5 and 6).

For a topological space Y, $\mathcal{E}(Y)$ denotes the category consisting of all vector bundles over Y and vector bundle morphisms. Also, when X is a G-space $\mathcal{E}_G(X)$ is the category of G-vector bundle over X. $K_C(Y) = K(Y)$ is the completion of the semi-group $\mathcal{E}(Y)$, and $K_G(X)$ is the completion of the semi-group $\mathcal{E}_G(X)$.

Lemma 1. For a finite group G, let X be a left G-space, on which G acts freely. For a G-vector bundle E over X, E/G is a vector bundle over X/G and $\pi^*(E/G) \approx E$, where $\pi: X \to X/G$ is the canonical projection. Moreover the categories $\mathcal{E}_G(X)$ and $\mathcal{E}(X/G)$ are equivalent under π^* .

Proof. In the above condition (iii)

$$E_x \longrightarrow E_{gx} (e \longmapsto \theta(g, e))$$

is a linear isomorphism, because of that

$$E_{sx} \longrightarrow E_x (f \longmapsto \theta(g^{-1}, f))$$

implies that for each e E_x $\theta(g^{-1}, \theta(g, e)) = \theta(g^{-1}g, e) = e$, we introduce the equivalence relation " \sim " on E as follows.

For $v, w \in E$

$$v \sim w \leftrightarrow \exists g \in G \qquad \cdot \ni \cdot \qquad w = gV.$$

Then, it is clear that $E/\sim =E/G$.

Furthermore, X/G is the set $\{G_x \mid x \in X\}$ with the quotient topology. Therefore, if we define $\widetilde{\pi}: E/G \to X/G$ by $(E_x) \mapsto G_x$ then (E/G) $G_x \approx E_x$, where (E_x) is an element of $E/\sim =E/G$ and E_x is the fiber of E at $x \in X$.

Let U_x be an open neighborhood of $x \in X$ such that $E \mid U_x$ is trivial. Then, for all $g \in G$ g U_x is an open neighborhood of g_x such that $U_x \approx g U_x$ (homeomorphic). Therefore $\pi(U_x) = \{ |GY| | Y \in U_x \}$ which is an open neighborhood of G_x in X/G.

Define

$$\psi: \widetilde{\pi}^{-1}(\pi(U_x)) \to \pi(U_x) \times C$$
 by $\varphi([E_x]) = G_x \times \varphi(E_x),$

where $\varphi: \bar{\pi}^{-1}(U_x) \to U_x \times C^n$ is a homeomorphism for the trivialization domain U_x and $\bar{\pi}: E \to X$. Hence $\tilde{\pi}: E/G \to X/G$ is locally trivial, and thus E/G is a vector bundle over X/G.

By the above description it is clear that $E \approx \pi^*(E/G)$. Next, we define a functor $s: \mathcal{E}_G(x) \to \mathcal{E}(X/G)$ by S(E) = E/G. Then we have $\pi^*S \approx 1_{\mathcal{E}_G}(X)$ and $S \cdot \pi^* \approx 1_{\mathcal{E}(X/G)}$. Q. E. D.

The following corollary is obvious by Lemma 1.

Corollary 2. and K(X/G) are isomorphic as abelian groups.

Definition 3. Let Y be a locally compact space. We consider the full subcategory $\mathcal{E}'(Y)$ of $\mathcal{E}(Y)$ whose objects are the direct summands of trivial bundles. For $E \in \mathcal{E}'(Y)$ if E has a metric and if $E_0 \oplus E_1$ is an orthogonal decomposition of E with respect to this metric, then an endomorphism $D: E \to E$ is said to be admissible if

$$D = \begin{pmatrix} O & \alpha^* \\ \alpha & O \end{pmatrix}$$

where $\alpha: E_0 \rightarrow E_1$ and α^* is the adjoint of α ,

(b) there is a compact subset K of Y such that $D \mid Y - K$ is an automorphism of $E \mid Y - K$.

We put

$$\xi = \{ (E, D) \mid E \in \xi'(Y) \text{ and } D \text{ is admissible } \}$$

An element $(E, D) \in \mathcal{E}$ is called *elementary* if D is an automorphism. For two elements (E, D) and (E, D') are *homotopic* if there exists an isometry of the form $f_0 \oplus f_1$, where $f_i : E_i \rightarrow E_i'$ (i=0, 1), such that $f^{-1} \circ D' \circ f$ is homotopic within the admissible operators on E.

We introduce the equivalence relation "~" on ξ as follows. For σ , $\sigma' \in \xi$

$$\sigma \sim \sigma \leftrightarrow \exists \tau, \tau$$
 elementary, such that

$$\sigma + \tau$$
 is homotopic to $\sigma' + \tau'$.

where for (E, D), $(E', D') \in \mathcal{E}$

$$(E, D) + (E', D') = (E \oplus E', D \oplus D').$$

We put

$$K_0(Y) = \mathcal{E} / \sim$$

in which each element is denoted by $\sigma(E, D)$. Then we can prove that $K_0(Y)$ and K(Y) are isomorphic ([3]).

Let Y be compact, and let $\pi: V \to Y$ be a vector bundle over Y with metric $\langle , \rangle = \{ \langle , \rangle_{\nu} \mid y \in Y \}$. Then, we have the exterior bundle $\wedge V$ over Y such that for $y \in Y (\wedge V)_{\nu} = \wedge V_{\nu}$ which is the exterior algebra of V_{ν} . There is the metric of $\wedge V$ as follows ([1]):

- (c) if $j \neq k$ then for $y \in Y \wedge^j V_y$ is orthogonal to $\wedge^k V_y$
- (d) if $x = \overline{u_1} \wedge --- \wedge u_k$, and $Y = V_1 \wedge --- \wedge V_k$, where u_r , $V_s \in V_y$, then

$$\langle x, u \rangle_{u} = \det |\langle u_{x}, V_{x} \rangle_{u}|$$

For a vector $v \in V_v$, we let $d_v : \wedge V_v \to \wedge V_v$ denote the linear map defined by $d_v(e) = V \wedge e$. Let us denote the adjoint of d_v by ∂_v . The Thom class $U_v \in k(V)$ $(=k_c(V))$ may be described as follows ((3)).

$$U_v = \sigma(\pi^* (\wedge V), \triangle).$$

where $\triangle : \pi^* (\land V) \to \pi^* (\land V)$ is defined by $\triangle (y, v) = d_v + \partial_v$ at the point (y, v) for $y \in Y$ and $v \in V_y$. Note that

- (e) △ is admissible
- (f) $\pi^* (\wedge V) = \pi^* (\wedge^{(0)} V) \oplus \pi^* (\wedge^{(1)} V)$ where

$$\wedge^{(0)} V = \bigoplus_{\ell=0}^{\infty} \wedge^{2\ell} V \qquad \qquad \wedge^{(1)} V = \bigoplus_{\ell=0}^{\infty} \wedge^{2\ell+1} V$$

We put

$$k^*(V) = \bigoplus_{q=0}^{\infty} k^{-q}(V), \quad k^*(Y) = \bigoplus_{q=0}^{\infty} k^{-q}(Y).$$

Then we have the Thom isomorphism theorem such that

Theorem 4. $k^*(V)$ is a free $k^*(Y)$ -module of rank one, generated by the Thom class U_v (for proof see [3]).

We shall return to our theory. As before, we assume that

- (iv) G is a finite abelian group with discrete topology,
- (v) x is a left G-space and compact,
- (vi) G acts freely on X,
- (vii) $\widetilde{\pi}: V \to X$ is a G-vector bundle over x and $\pi: X \to X/G$ is the canonical projection.

Theorem 5. $K_G(V)$ is a free $K_G(X)$ -module of rank one, generated by the Thom class $\widetilde{\pi}^*(U_{V/G}) = U_V$ where $\widetilde{\pi}: V \to V/G$ is the canonical projection.

Proof. We have to note that there are isomorphisms

$$\pi^*: K(X/G) \xrightarrow{\cong} K_G(X), \widetilde{\pi}^*: K(V/G) \xrightarrow{\cong} K_G(V)$$

by corollary 2; where π^* and $\tilde{\pi}^*$ are induced from

$$\pi^* : \mathcal{E}(X/G) \longrightarrow \mathcal{E}_G(X)$$
 and $\widetilde{\pi}^* : \mathcal{E}(V/G) \longrightarrow \mathcal{E}_G(V)$,

respectively. Moreover, we know that K(V/G) is a free K(X/G)-module of rank one, generated by $U_{V/G} = \sigma(\overline{\pi}^*(\wedge (V/G)), \triangle)$ by Theorem 4.

Since $X \times V$ is a left G-space with $G(X \times V) = GX \times GV$, there is the product

$$K_{G}(X) \times K_{G}(V) \xrightarrow{U} K_{G}(X \times V) \xrightarrow{f^{*}} K_{G}(V)$$

wher \cup is the cup-product in k-theory ([2]) and $j: V \to X \times V$ is defined by $j(V_x) = (x, V_x)$ for $x \in X$ and $V_x \in V_x$, Since $X \times V / G \approx X / G \times V / G$ and G acts freely on $X \times V$ we have the commutative diagram

$$K(X/G) \times K(V/G) \xrightarrow{U} K(X/G \times V/G) \xrightarrow{J*} K(V/G)$$

$$\pi^* \times \widetilde{\pi}^* \downarrow \approx \qquad \qquad \qquad \approx \downarrow \widetilde{\pi}^*$$

$$K_G(X) \times K_G(V) \xrightarrow{U} \qquad \qquad K_G(X \times V) \xrightarrow{J*} K_G(V).$$

By Theorem 4 we have

$$K(X/G)\times U_{V/G} \xrightarrow{\simeq} K(V/G),$$

and thus

$$K_G(X) \times \widetilde{\pi}^* (U_{V/G}) = K_G \times U_V \cong K_T(V).$$
 Q. E. D.

Let X be a locally compact space. We assume conditions (iv), (vi), (vii) above

and

(V)' X is a left G-space.

Then we can prove that K(V/G) and K(X/G) are isomorphic ((3)).

Theorem 6. Under the above circumstance, $K_c(V)$ and $K_c(X)$ are isomorphic.

Proof. By the commutative

$$K(V/G)$$
 \cong $K(X/G)$ \cong $\downarrow \pi^*$ $K_c(V)$ \longrightarrow $K_c(X)$ our assertion is abvious. $Q. E. D.$

References

- [1] P. E. Conner and E. E. Floyd; The relation of cobordism to k-theory. Springer-Verlag, (1966)
- [2] D. Husemoller; Fibre bundles. Springer-Verlag, (1966).
- [3] M. Karoubi; K-theory, Springer-Verlag (1978)

Hanyang University
Jeonbug National University