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A Note on Linear Equations over a Commutative Ring

By Hideyuki Matsumura

1. Consider a system of linear equations

1) Sam=b  (1<i<r).

Let A=(a,,) be the r Xn matrix of the coefficients and B=(A, B) be the » X
(n+ 1) matrix obtained by adding the column B=(by, -+, bs) to A. '

According to what we learned in the college linear algebra the system (1) is
solvable iff

(2) rank A =rank B.
But this criterion is valid only when we work over a field. If we work over a
commutative ring R instead of a field, it is another story. For instance 2 x4y
=1 is not solvable in Z, because for x, y&Z the left hand side is an even
number.

Let R be a commutative ring (we assume that R has a unit element 1 and that
1+0), and suppose a,, b,€R in(1). Let

(3) . R" — R"
be the linear mapping from the free module R™ with basis ei, ***, en to the free mo-
dule R™ with basis e}, ---, e> defined by

(4) $(e,) =3 a, i (1<ign).
Then (1) is solvable in R iff the element ﬁxé‘bzeQER’ is in Im(#), or what is
the same thing, the image 8 of 8 in R” /Im () is zero. |

For every prime kideal P of R let apr denote the canoﬁical image of a&R in the
local ring Ro. If the system of equations z a1 =be (1<i<r) is solvable in
R, we will simply say that (1) is solvable in Ra. On the other hand, the martrix
(a,,,) defines the localization g» 1 R —R: of ¢, and we have R5 /Im (¢o)=(R")»
/Im ($) o= (R"/Im ($))o. Thus (1) is solvable in Ry iff Bo=0, where fgis the
canonical image of 8 in (R"/Im($))».

In general, if M is an R-module and mEM, then we know ([6) p. 7 Lemma
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1) that
m=0 < m,=0 in M, for all P €Max (R)
where Max (R) denotes the set of the maximal ideals of R. Therefore we have

the following theorem.

THEOREM 1. The system of linear equations

8y a1 =b. (1<i<n)

over a commutative ring R is solvable in R iff it is solvable in R, for every P&
Max (R). |

2. Let A=(a,) be an r Xn matrix over R (i.e. a,ER) and let ¢t be a positive
integer. The ideal of R generated by the X3 miﬁors of A .is denoted by I,(A).
Fo t>min (r,n) we put I: (A)=(0). We have I: (A) DI:(A) 2. These ideals
are called the determinantal ideals and have been studied by many mathematicians.
As in the case of a field we define thg rank of the matrix A by

(5) rank A=sup {t | 1:(4) =0 }.
By an elementary operation on A we mean

(a) a permutation of the rows (or the columns),

(b) multiplication of a row {(or column) by a unit of R,

(c) replacing the i- th row(or column) a, by a,+ca;, where ¢ER and ji

Then I: (A) does not change when we perform elementary operations on A. If
a row (or colum) is a linear combination of the other rows (respectively, colu-
mns) with coefficients in R, then we can remove it from A withpu’c changing I,
(A). Returning to the system of linear equations (1), if it has a solution in R then
the last column 8 of the matrix B is a linear combination of the columns of A.

Therefore :

THEOREM 2. In order that (1) is solvable in R, it is necessary that we have
(6) I. (A)=I.(B) =1,2,r
Remark. Unfortunately (6) is not sufficient in general, as the following example

shows.

Example 1. Let R=k(u,v}, where K is a field and 4, v are indeterminates.
Consider the system
u® x1 +vx: +uxs =vp
(7)

v “+uxs =u’,
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A note on linear equations over &. ¢ommulative ring 3

Then o v u u’ p u v
A== B=
v 0 ul , v o u o
and Iy (A)=(u, v)R=I (B), I: {(A)= (4, av, v")R=1:(B). Bit from the second

equation pxi+uxs =u* it follows that x: must be divisible by « in R. So we put

x1=ux1. Then (7) is equivalent to
u® 2% +oxs +uxs =v
(®) {

vxt “+xs =y

This time we have

o v u
A=( 1) I: (A)=(v, v’)R,

v 0 )
£ v u v .
B= Vel (B)
v o 1 u/,

Hence I: (B)=1I: (A) and (8) is not solvable. Thus (7) satisfies (6], but is -not

solvable.

THEOREM 3. Let A= (a,) be an r Xn matrix over a commutative ring R with
I.(A)=R. Then

(1) };auxf ==h: (1<€ig<r)

is solvable in R for any constant terms b,; in other words the linear mapping ¢:
R"—R" defined by the matrix A is surjective. Conversely, if ¢ is surjective then

Ir(A)zR.

Proof . If ¢ is surjective then the columns of the r Xz unit matrix E are linear
combinations of the columns of A, hence Ir(A)=I-(C) where C is the rX (n+7)
matrix (4, E). Clearly, I-(C)=R.

Conversely, assume I-(A)=R. We have to prove that (1} is solvable in R, and
by Theorem 1 it suffices to show that (1) solvable in R, for every P €Max (R).
Thus we may assume that R is a local ring with maximal ideal m.. (Note that the
hypothesis Ir(A)=R is preserved by localization,) Then I-(A)=R implies that

some rXr minor of A is a unit of R. Suppose, say, that det(a,)isisr, 1s1<r

is a unit of R. Then, if we put xr.=-==x,=0 and solve the equations
(9 ?;a.,x;:bt (1<igr)
by Cramer’'s rule, we get a solution of (1) in R. Q. E. D.
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3. In this section we assume that R is an integral domain and rank (A) =rank
(BY=r". If r"<r and if, say, the first r' rows of A are linearly independent,
then a solution of the. first " equations in (1) automatically satisfies the remain-
ing r—r’ equations. Therefore we can throw away the last r—r’ equations and
assume r==y’,

Recall that an integrally closed noetherian domain of Krull dimension one is called
a Dedekind domain. The ring of the algebraic integers in an algebraic number
field K is a Dedekind domain. If P is a maximal ideal of a Dedekind domain R

then the local ring Re is a DVR (==discrete valuation ring),

THEOREM 4. [ R is a Dedekind domain and rank (A)=rank (B)=r’, then
system (1) is solvable in R iff
(10) Ir (A)zlr (B).

Proof . We hajve already seen that the condition is necessary (Th. 2). To prove
the sufficiency, we may localize at a maximal ideal (Th. 1) because the condition
(10 is preserved by: localization. Therefore we assume that R is a DVR with prime
element ¢t. Then every nonzero ideal of R is of the form t*R, k>» 0. By the re-
mark at the beginning of this section we may assume that r=r/

It is easy to transform the matrix A to the form

t® 0

(1 te

. 0 erCerK er,
0 L oper
by elementary operations. In fact, if ex is the largest Integer such that {* divides
all @,;, we may assum , by permutations of rows and columns, that ay R=1" R.
Multiplying the first column by a unit we may’ assume that a, =t°", Then, since
all a,, are divisible by a,, ~we can reduce a,, ', ain to zero by suitable elemen-
tary column operations. Then by elementary row operations we reduce a, ‘', am

to zero, to obtain

where the entries e, of the (r— 1)X (n— 1) matrix A" are divisible by t*'. We
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repeat the process with A’ instead of A, and so on. In the end A is transformed
into the form (11). It should be remembered, howevgr, that when we perform an
elementary row operation on A, the same operation must be performed on B,

because an elementary row operation on A corresponds to the transition from the
original sysiem of equations to an equivalent system. On the other hand. an

elementary column operation corresponds to an invertible change of variables.

If A is of the form (11) then we have Ir(A)=t@*"*¢rR and

tel b‘
12 B= . 0 .
0 te" by
and the r Xr minors of B other than those of A are .
bet&r e Ty, T, i==1, .

These elements are in I-(A) iff
te | b i=1,r,
i.e. iff the system
13 thxe=bi, i=1,"r

is solvable in R. Q. E. D.

Remark 2. It is well known that, if R is a principal ideal domain, then for any
matrix A over R there exist invertible matrices P and @ such that F’AQ is of the
form .

a,

.. 0 alal-|ar
Gy .

0
with a,# 0 and r=rank (A). (Cf. e.g. Bourbaki, Algébre Ch. 7.)

The proof is particularly simple in the case of DVR. as we have se¢en above.

Remark 3. According to Dickson ([2] p.82—~83), Th. 3 in the case R=17
was first proved by J. Heger (5] in 1856. I don’t know if the case of a Dede-
kind domain has appeared in the literature.

4. When R is a noetherian ring, the solutions of a given system of homogene-
ous linear equations constitute a finitely generated R-module. Therefore, assum-

ing that we can
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1) decide whether a single linear equation
znatxt =p
{ =)
has a solution in R or not;and
) find a system of generators (i.e. so-called fundamental system)
&0=(&%, &f, -, &R, 1< am
of the R-module of solutions of the homogeneous equation
Saxi=0,
we can theoretically decide the solvability of (1) as follows:
First we take up the first equation
19 2 avxi =b.
If it is not solvable, we are done. Otherwise we find the complete set of solu-

tious of (14) in the form
L
(15) (xl,"'. xn) =77+ ztafa,
Ol

where # is a solution of (14) ti, -, tm are parameters and { &% | 1< a<n, } isa
system of generators of the solution module of aiiz:=0.

Then we substitute x: =+ %ta &F (1 <i<n) into the remaining r — 1 equations
of (1), to get a system of r— 1 linear equations in s, unknowns t, (I<a{n,).
Reducing the number of equations in this way, we will be able, not only to decide
the solvability, but also to obtain (if it is solvable) a complete set of solutions
of (1). The disavantage of this procedure is that we cannot decide the solvability
until we really find the solution.

In [I) we need some criterion to decide whether the solutions &', ---, &§™ ge-
nerate the complete set of solutions of 3 acz¢= 0. In other words, given m so-
lutions &‘=(&l, -+, &n) of Tauxi=0, we must decide whether the sequence of
Rmodules

16

is exact, where g and $; are defined by the matrices (a:, -, an) and (&/) re-

R™ ‘l’! R™ ¢' R

spectively. We can ask, more generally, the problem of deciding the exactness of

a sequence of the form

(17) R* % » R4 d’l R

where #: =0 and ¢, is defined by a matrix A:(i=1, 2).
THEOREM 5. If R is a Dedekind domain, then the sequence (17) is exact iff the
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following conditions hold :
() renk Aitrank A:=q,
and (ii) Is» (As)=R, where p’ =rank As.

Proof. A sequence of R-modules is exact iff it is exact after localization at P
at every PEMax (R). The rank of a matrix does not change by lmdization, since
R is an integral domain. An ideal I of R is equal to R iff IR,=R, for every P
&Max (R). Therefore we may localize and assume that R is a DVR, Then we
may assume that 4. is of the form An-—‘-‘-(‘(l))g), where D is a diagonal ¢” Xq  ma-
trix similar to (1) with ¢’ =rank A.. Then the necessity of the conditions (i), (ii)
is easy to check. To see the sufficiency we note that, since R is a local ring,
(ii) holds iff some p’Xp’ minor of Az is a unit of R. Since A14=0 the matrix
A: must be of the form (8), where C is a (g—¢q ) Xp matrix. By {i) we have
p’ =q—q’. Thus we may suppose that C is of the form (E, 0) where E is the
p’ Xp’ unit matrix. Then (17) is exact. Q. E. D.

Remark 4. According to Dickson ({2 ) p.84),. this theorem was proved by Fro-
benius (3] in the case R=Z.

Remark 5. I R is a principal ideal domain, every submodule of a free module
is free. Therefore the solution module of an equation gixi+- - +anxn=0 can be

generated by n— 1 vectors.

Example 2. Consider the equation
3z+4y+52=0

over Z. Denote the solution module by M. put &=(0, 5, —4), &=(5, 0,
—3), £=(4, —3, 0), 7=8—&=(1, 3, —3). Applying the theorem
we see that no two of &, &, & can generate M, and that & and 77 generate
M. ‘

Unfortunately it is difficult to generalize the theorems 4 and 5 to rings of
dimension> 1. In the problem of deciding the exactness of (17) the most powerful
tool is perhaps the criterion of Buchsbaum-Eisenbud (1], which can be used,
e.g., in proving the following partial result.

If Iis an ideal of a noetherian ring R and if I#+R, we let depth:(I, R) be the
length of a maximal R-sequence contained in I. (When R is Cohen-Macaulay we
have depth (I, R)==ht I.) If I==R we set depth (I, R) =00,

A noetherian domain is called a regular domain if R, is a regular local ring for
19
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every maximal ideal P.

THEOREM 6. Let R be a regular domain. Then (I7) is exact only if the fol-
lowing condition hold . (i) rank (A, )+rank (A, )=q, and (i) depth (I,+(A,),
R) > 2, where p*=rank (Ay). Conversely, if these conditions are satisfied, if %

# 0 and if ¢, is injective, then (17) is exact.

Proof. Exactness and rank do not change by localization. Moreover, If Iis an
ideal of R and P is a prime ideal containing I, then in general we have depth (J,
R)< depth (IR», Rr)<depth (PR, R;)=depth (Rs), and the equalities hold for at
least one}P (cf. (6] first edition p. 101, 2 nd edition p.105). Therefore we may
localize and assume that R is a regular local ring. Let (17) be exact. Then (i)
holds since it holds over the quotient field of R. As for (ii) we use the famous
theorem of J, -P. Serre which says that every module over a regular local ring
has a finite projective dimension. Thus, taking a free resolution of ker (#:) of
finite length and adding it to the left of (17, we get a complex

18 0~—~R"‘£i R"-*;--é* R"‘é’R“ﬁ R,
which is exact. According to an important theorem of Buchsbaum-Eisenbud [1 )
(c¢f, also (7)), a complex

19 0 —’Fn‘({'z Fna**“'ﬁFx ﬂ F,,
where F'; are free modules of finite rank, is exact iff, for 1<k<n, we have
(i) * rank ¢ xe1+ rank prx=rank Frand (ii)* depth (I, (%)), R) >k where r,=
rank ($x). (By I. (§) we mean I: (A), where A is a matrix representing the li-
near map ¢ with respect to some bases. This definition is obviously independent
of the choice of the bases, Similarly for rank (¢). ) Applying this theorem to (1§
we see that depth (Io* (A:), R) =2, as wanted.

If we do not assume that (17) is exact, but assumev that ¢ & 0 and . is injec-
tive, then the sequence
% 4

20 0—+R? — R = R"
is a complex of the type (19, and if the conditions (i), (ii) of the theorem are
satisfied then the conditions (i) *, (ii) * of the Buchsbaum- Eisenbud' theorem hold.

Thus 20 (hence also (17)) is exact. Q. E. D.

Example 3. Let R=k[u v] be the polynomial ring in u, v over a field k, and
consider the equation
@ u? x +uvy+oviz=20.
20
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The vectors &= (—v, u, o), "=(o, —v, u) generate the solution module of

1), as one can easily check by Th. 6. On the other hand the matrix

—v —up 0
A= uv u? -
o 0 u

has rank 2 and depth (I: (4), R)=2, but its columns v &, ué&, 7 do not gene-

rate the solution module.

Question. Are there any convenient criteria for the solvability of (1) over say
k(u,v) ? o
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