LIFTING *-MORPHISMS OF UHF ALGEBRAS

By Sung Je Cho

§1. Introduction

1.1 Let \mathscr{R} be a separable infinite dimensional Hilbert space, $\mathscr{L}(\mathscr{R})$ the algebra of all bounded operators \mathscr{R} , $\mathscr{K}(\mathscr{R})$ the ideal of compact operators, $\mathscr{Q}(\mathscr{R})$ the quotient algebra $\mathscr{L}(\mathscr{R})/\mathscr{K}(\mathscr{R})$, and π the canonical homomorphism of $\mathscr{L}(\mathscr{R})$ onto $\mathscr{Q}(\mathscr{R})$. Let X be a compact Hausdorff space and C(X) be the algebra of all complex-valued continuous functions on X. Brown, Douglas and Fillmore initiated in their pioneer work [2] the study of the group Ext X consisting of unitary equivalence classes of unital *-monomorphism $\tau: C(X) \to \mathscr{Q}(\mathscr{R})$. The group Ext X has many interesting features. Recently the theory of Ext has been generalized to non-commutative C^* -algebras with remarkable successes by work of many mathematicians (see for example [1]).

1.2 Let \mathcal{M} be a II_{α} -factor acting on H. It is well-known that \mathcal{M} possesses an ideal analogous to K(H); namely, the norm-closed two sided ideal $\mathcal{K}(\mathcal{M})$ generated by all finite projections in \mathcal{M} . Let $\mathcal{Q}(\mathcal{M})$ denote the quotient algebra and π the canonical homomorphism. Then one can consider unitary equivalence classes of unital *-monomorphism $\tau: C(X) \to \mathcal{Q}(\mathcal{M})$ and can ask whether there exists a parallel theory in the context of II_{∞} -factors. Fillmore $\begin{bmatrix} 5 \end{bmatrix}$ and Cho $\begin{bmatrix} 4 \end{bmatrix}$ indeed succeeded in developing extension theory to relative to II_{∞} -factors. Then the obvious question would be: is there any fruitful theory of extension relative to a II_{∞} -factor for separable nuclear C*-algebras? Arveson's observation and Choi-Effros lifting theorm of completely positive maps (see for example $\lceil 1 \rceil$) make it possible that the unitary equivalence classes of unital *-monomorphism $\tau: \mathcal{A} \to \mathcal{O}(\mathcal{M})$ for a separable nuclear C*algebra r^2 forms an abelian group provided that one can have the Voiculescu's non-commutative Weyl-von Neumann theorem analogue in the context of II_-factors.

1.3 In this note, we examine lifting problem of unital *-monomorphism $\tau : \mathcal{A} \to \mathcal{O}(\mathcal{M})$. Similar lifting problem for the classical Calkin algebra was

Received May 22, 1982.

Research for this paper was supported by the Ministry of Education, Korea, ED 80-82.

considered earlier by Thayer [6]. Our result says that for UHF algebras \mathcal{A} any unital *-monomorphism $\tau : \mathcal{A} \to \mathcal{O}(\mathcal{M})$ can be lifted to unital *-monomorphism σ such that the following diagram commutes:

§2. Liftings for finite-dimensional C^* -algebra

2.1 Let \mathcal{A} be a C^{*}-algebra. A family of partial isometries $\{e_{ij}\}_{i,j=1}^{n}$ of \mathcal{A} such that

$$e_{ij}e_{km} = 0$$
 for $j \neq k$
 $e_{ij}e_{km} = e_{im}$ for $j = k$
 $e_{ij}^* = e_{ji}$

is called a system of matrix units in A.

For example if \mathcal{A} is a full matrix algebra M_n , then the matrices e_{ij} having entries zero except in the (i, j)-position and having 1 in the (i, j)-position forms a matrix units in M_n . Let $\{u_{ij}\}_{i, j=1}^n$ be a matrix units in $\mathcal{O}(\mathcal{M})$. Then it is easy to see that any system of matrix units $\{e_{ij}\}$ in M_n determines a unique *-monomorphism $\tau: M_n \to \mathcal{O}(\mathcal{M})$ such that $\tau(e_{ij}) = u_{ij}$ for all i, j =1, 2, ..., n. In order to find *-monomorphism $\sigma: M_n \to \mathcal{M}$ such that $\tau = \pi \circ \sigma$, we begin with the following lemma, which is type Π_{∞} version of Calkin's lifting theorem.

2.2 LEMMA. Suppose that p and q are projections in $\mathcal{Q}(\mathcal{M})$ such that $p \leq q$. Then there exist projections P and Q in \mathcal{M} such that $P \leq Q$ and $\pi(P) = p, \pi(Q) = q$.

Proof. First we will prove that for any projection q in $\mathcal{Q}(\mathcal{M})$ there exists a projection Q in \mathcal{M} with $\pi(Q) = q$. To prove this, we choose X in \mathcal{M} such that $\pi(X) = q$. Since $\pi(X + X^*/2) = q$, we may and do assume that X is a self-adjoint element of \mathcal{M} . Let Q be the spectral projection of X corresponding to the interval $(\frac{1}{2}, \infty)$. Then the same argument as in [2, Theorem 2.4] tells us that X - Q is in the compact ideal $\mathcal{K}(\mathcal{M})$. Hence $\pi(Q) = q$. Since $p \leq q$, p belongs to $q\mathcal{Q}(\mathcal{M})q$. But $\pi(Q\mathcal{M}Q) = q\mathcal{Q}(\mathcal{M})q$ and hence there exists a p in $Q\mathcal{M}Q$ such that $\pi(P) = p$. This completes the proof.

2.3 LEMMA. Suppose that P and Q are orthogonal projections in \mathcal{M} . Let u be a partial isometry in $\mathcal{O}(\mathcal{M})$ such that $u^*u=\pi(P)$, $uu^*=\pi(Q)$. Then there

exists a partial isometry U in \mathfrak{M} with $\pi(U) = u$, $U^*U \leq P$ and $UU^* \leq Q$.

Proof. Choose X in \mathcal{M} with $\pi(X) = u$. Let $\pi(P) = p$ and $\pi(Q) = q$. Since $\pi(QXP) = q\pi(X)p = qup = u$, we may assume that X belongs to $Q\mathcal{M}P$. Let $X = V(X^*X)^{1/2}$ be its polar decomposition. Since $\pi((X^*X)^{1/2}) = (u^*u)^{1/2} = \pi(P)$, by 2.2 there exists a projection E in \mathcal{M} with $\pi(E) = \pi(P)$, namely the spectral projection of $(X^*X)^{1/2}$ corresponding to $(\frac{1}{2}, \infty)$. Moreover E is a subprojection of the range projection of $(X^*X)^{1/2}$. Thus E is a subprojection of the initial projection of the partial isometry V. Hence VE is a partial isometry with the desired properties.

2.4 LEMMA. Let $\{e_{ij}\}_{i,j=1}^{n}$ be a system of matrix units in $\mathcal{O}(\mathcal{M})$. Then there exists a system of matrix units $\{E_{ij}\}_{i,j=1}^{n}$ in \mathcal{M} such that $\pi(E_{ij}) = e_{ij}$ for all i, j=1, 2, ..., n.

Proof. We will prove this by the principle of mathematical induction. For n=2, by 2.2 we can choose two orthogonal projections F_{11} and F_{22} in \mathcal{M} with $\pi(F_{11}) = e_{11}$ and $\pi(F_{22}) = e_{22}$. By 2.3 there exists a partial isometry E_{21} in \mathcal{M} such that $\pi(E_{21}) = e_{21}$, $E_{21}^* E_{21} \leq F_{11}$, $E_{21}E_{21}^* \leq F_{22}$. Since $F_{11} - E_{21}^* E_{21}$ and $F_{22} - E_{21}E_{21}^*$ are finite projections, we have $\pi(F_{11}) = \pi(E_{21}^* E_{21})$ and $\pi(F_{22}) = \pi(E_{21}E_{21}^*)$. Finally we put $E_{11} = E_{21}^*E_{21}$ and $E_{22} = E_{21}E_{21}^*$. Then $\{E_{ij}\}, 1 \leq i, j \leq 2$ is the desired system of matrix units. Now suppose that a system of matrix units $\{F_{ij}\}, 2 \leq i, j \leq n$, has been chosen so that $\pi(F_{ij}) = e_{ij}, 2 \leq i, j \leq n$. Choose a projection F_{11} which is orthogonal to $F_{22} + F_{33} + \dots + F_{nn}$ (possible by the proof of 2.2). Apply 2.3 to get a partial isometry E_{21} such that $\pi(E_{21}) = e_{21}, E_{21}^*E_{21} \leq F_{11}, E_{21}E_{21}^* \leq F_{22}$. We put $E_{11} = E_{21}^*E_{21}$, $E_{22} = E_{21}E_{21}^*$. Then $\pi(E_{11}) = \pi(F_{11})$ and $\pi(E_{22}) = \pi(F_{22})$. We put $E_{11} = E_{21}^*E_{21}$, $E_{22} = E_{21}E_{21}^*$. Then $\pi(E_{11}) = \pi(F_{11})$ and $\pi(E_{22}) = \pi(F_{22})$. We put $E_{11} = E_{21}^*E_{21}$, $E_{22} = E_{21}E_{21}^*$. Then $\pi(E_{11}) = \pi(F_{11}) = \pi(F_{11})$ and $\pi(E_{22}) = \pi(F_{22})$. We put $E_{11} = E_{21}^*E_{21}$.

2.5 Let P be a finite projection in $\mathcal{L}(\mathcal{R})$. Let n be a natural number. Then there exist mutually orthogonal equivalent projections P_1, P_2, \ldots, P_n such that $P_1+P_2+\ldots+P_n=P$ if and only if n divides the vector space dimension of the range space of P.

However, in a II_{∞} -factor \mathcal{M} for any finite projection P and for any natural number n there exist mutually orthogonal equivalent projections P_1, P_2, \ldots, P_n such that $P_1+P_2+\ldots+P_n=P$. This distiction makes the following theorem possible.

2.6 THEOREM. For any unital *-monomorphism $\tau: M_n \to \mathcal{O}(\mathcal{M})$, there exists a unital *-monomorphism $\sigma: M_n \to \mathcal{M}$ such that $\tau = \pi \circ \sigma$.

Sung Je Cho

Proof. Let $\{e_{ij}\}_{i,j=1}^{n}$ be a system of matrix units for M_n . It suffices to show that there exists a system of matrix units $\{F_{ij}\}$ in \mathcal{M} such that $\pi(F_{ij}) = \tau(e_{ij})$ and $F_{11}+F_{22}+\ldots+F_{nn}=1$. Let E_{ij} be a system of matrix units in \mathcal{M} which lifts $\tau(e_{ij})$ (it is possible by 2.4). Since $\pi(E_{11}+\ldots+E_{nn})=1$, the projection $P=1-(E_{11}+\ldots+E_{nn})$ is finite in \mathcal{M} . Choose mutually equivalent orthogonal projections P_1, P_2, \ldots, P_n such that $P_1+P_2+\ldots+P_n=P$. Let U_{i1} be a partial isometry connecting P_1 to P_i . Note that P_i and U_{i1} are compact elements in \mathcal{M} . Set $F_{ii}=E_{ii}+P_i$ and $F_{i1}=E_{i1}+U_{i1}$. Then $\{F_{i1}\}_{2\leq i\leq n}$ will generate a system of matrix units $\{F_{ij}\}$ with $F_{11}+F_{22}+\ldots+F_{nn}=1$. This completes the proof.

Since any finite dimensional C^* -algebra is a direct sum of full matrix algebras, we get:

2.7 COROLLARY. Let \mathcal{A} be a finite dimensional C^* -algebra. Let $\tau : \mathcal{A} \to \mathcal{O}(\mathcal{M})$ be a unital *-monomorphism. Then there exists a unital *-monomorphism $\sigma : \mathcal{A} \to \mathcal{M}$ such that $\tau = \pi \circ \sigma$.

2.8 LEMMA. Let \mathcal{A} be a full matrix algebra. Suppose that σ_1 and σ_2 are unital *-monomorphisms of \mathcal{A} into \mathcal{M} . Then there exists a unitary U in \mathcal{M} such that $\sigma_1(x) = U^* \sigma_2(x) U$ for all x in \mathcal{A} .

Proof. Let $\{E_{ij}\}_{1 \le i, j \le n}$ be a system of matrix units for \mathcal{A} . We put $e_{ij} = \sigma_1(E_{ij})$ and $f_{ij} = \sigma_2(E_{ij})$. It suffices to show that there exists a unitary U in \mathcal{A} such that $e_{ij} = U^* f_{ij} U$ for all $1 \le i, j \le n$. To this end, since \mathcal{M} is a σ -finite II_{∞} -factor, the infinite projections e_{11} and f_{11} are equivalent. Hence there exists an element V of \mathcal{M} such that $V^* V = e_{11}$ and $VV^* = f_{11}$. We put $U = \sum_{i=1}^{n} f_{i1} V e_{1i}$. Then it is easy to check that $e_{ij} = U^* f_{ij} U$. This completes the proof.

2.9 COROLLARY. Let \mathcal{A} be a finite dimensional C^* -algebra. Let $\tau_1, \tau_2: \mathcal{A} \to \mathcal{O}(\mathcal{M})$ be unital *-monomorphisms. Then there exists a unitary U in \mathcal{M} such that

$$\tau_1(x) = \pi(U)^* \tau_2(x) \pi(U)$$

for all x in A.

Proof. According to Corollary 2.7, each τ_i has a unital lifting σ_i satisfying $\tau_i = \pi \circ \sigma_i$, i = 1, 2. Application of Lemma 2.8 to summand by summand will give us a unitary U implementing the requirement.

2.10 REMARK. Two extensions (i.e., unital *-monomorphisms) τ_1, τ_2 : $\mathcal{A} \to \mathcal{O}(\mathcal{M})$ are said to *equivalent* if there exists a unitary U in \mathcal{M} such that $\tau_1(x) = \pi(U)^* \tau_2(x) \pi(U)$ for all x in \mathcal{A} . The sum of $\tau_1 + \tau_2$ is the extension $\tau : \mathcal{A} \to \mathcal{O}(\mathcal{M})$ defined as follows: choose isometries V_1 and V_2 in \mathcal{M} such

26

that $V_1V_1^* + V_2V_2^* = 1$, and let

$$(\tau_1 + \tau_2)(x) = \pi(V_1)\tau_1(x)\pi(V_1^*) + \pi(V_2)\tau_2(x)\pi(V_2^*)$$

for all x in \mathcal{A} . The equivalence class of $\tau_1 + \tau_2$ is independent of the choice of isometries in the definition. Let $\operatorname{Ext}^{\mathfrak{M}}\mathcal{A}$ denote the equivalence classes of extensions. Then for commutative C^* -algebra $\mathcal{A} \operatorname{Ext}^{\mathfrak{M}}\mathcal{A}$ is an abelian group (see [4] for details). Corollary 2.9 can be restated as follows: For finite dimensional C^* -algebra \mathcal{A} , the $\operatorname{Ext}^{\mathfrak{M}}\mathcal{A}$ is always trivial group.

We close this section with the following.

2. 11 THEOREM. Suppose that A_1 and A_2 are full matrix algebras and that A_1 is a subalgebra of A_2 with the same unit. If $\tau_1, \tau_2 : A_2 \to \mathcal{O}(\mathcal{M})$ is a unital*-monomorphism and $\sigma_1 : A_1 \to \mathcal{M}$ is a unital *-monomorphism such that $\pi \circ \sigma_1 = \tau_1$, and then $\tau_2/A_1 = \tau_1$ there exists a unital *-monomorphism $\sigma_2 : A_2 \to \mathcal{M}$ such that $\pi \circ \sigma_2$ $= \tau_2$ and $\sigma_2 | A_1 = \sigma_1$.

Proof. Let $\{e_{ij}\}_{i,j=1}^{n}$ be a system of matrix units for \mathcal{A}_{1} and $\{f_{ij}\}_{i,j=1}^{m}$ be a system of matrix units for \mathcal{A}_{2} . Since $\mathcal{A}_{1} \subset \mathcal{A}_{2}$, *n* devides *m*. Let m = kn. By rearranging f_{ij} if necessary, we can assume that $e_{11} = f_{11} + f_{22} + \ldots + f_{kk}$, $e_{22} = f_{k+1k+1} + \ldots + f_{2k2k}$, ..., By applying 2.5 to $\sigma_{1}(e_{11})$, $\tau_{2}(f_{ii})$, $i = 1, 2, \ldots, k$; $\tau_{2}(f_{i1})$, $i = 2, \ldots, k$, we get a system of matrix units $\{F_{ij}\}_{1 \le i, j \le k}$ in \mathcal{M} such that

1) $F_{11} + F_{22} + \ldots + F_{kk} = \sigma_1(e_{11})$

2) $\pi(F_{ij}) = \tau_2(f_{ij}), \ 1 \le i, \ j \le k$

For each j=2, 3, ..., n, i=2, 3, ..., k, we put

3) $F_{1+(j-1)k,1} = E_{j1}F_{11}$ and $F_{i+(j-1)k,1} = E_{j1}F_{i1}$

Then these partial isometries $\{F_{s1}\}_{2 \le s \le m}$ together with properties (1) and (2) furnish us with the desired *-monomorphism $\sigma_2 : \mathcal{A}_2 \rightarrow \mathcal{M}$

\S 3. Liftings for UHF algebras

A C^* -algebra \mathcal{A} with unit is uniformly hyper-finite(UHF) if there is an increasing sequence $\{\mathcal{A}_n\}$ of full matrix subalgebras containing the same unit of \mathcal{A}_n and such that $\bigcup_{n=1}^{\infty} \mathcal{A}_n = \mathcal{A}$.

THEOREM. Let \mathcal{A} be a UHF algebra with $\overline{\bigcup_{\mathcal{A}_n}} = \mathcal{A}$, where \mathcal{A}_n is increasing sequence of full matrix subalgebras. Let $\tau : \mathcal{A} \rightarrow \mathbb{Q}(\mathcal{M})$ be a unital *-monomorphism. Then there exists a unital *-monomorphism $\sigma : \mathcal{A} \rightarrow \mathcal{M}$ such that $\pi \circ \sigma = \tau$.

Proof. Let σ_1 be a unital *-monomorphism of A_1 into \mathcal{M} such that $\pi \circ \sigma_1 = \tau | A_1$ (such a σ_1 exists by 2.6). By 2.11 we can extend σ_1 to a *-monomor-

Sung Je Cho

phism σ_2 of \mathcal{A}_2 into \mathcal{M} such that $\pi \circ \sigma_2 = \tau | \mathcal{A}_2$. Thus by keeping doing this process, we get a unital *-monomorphism $\overline{\sigma} : \overline{\bigcup \mathcal{A}_n} \to \mathcal{M}$ such that $\pi \circ \sigma = \tau | \bigcup \mathcal{A}_n$. Let σ be the unique extension of $\overline{\sigma}$ to \mathcal{A} . Now it is clear that $\pi \circ \overline{\sigma} = \tau$. This completes the proof.

References

- W. B. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329-355.
- L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Lecture Notes in Mathematics, 345, Springer-Verlag, New York, 1973.
- 3. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-872.
- S. J. Cho, Extensions relative to a II_∞-factor, Proc. Amer. Math. Soc. 74 (1979), 109-112.
- P. A. Fillmore, Extensions relative to semi-finite factors, Istituto Nazionale di Alta Mathematica, Simp. Math. 20 (1976), 486-496.
- F. J. Thayer, Obstructions to Lifting *-monomorphisms into the Calkin algebra, [1]. J. of Math. 20 (1976) No. 2, 322-328.

Seoul National University