LIFTING *-MORPHISMS OF UHF ALGEBRAS

By Sung Je Сho

§1. Introduction

1. 1 Let \mathscr{H} be a separable infinite dimensional Hilbert space, $\mathcal{L}(\mathscr{H})$ the algebra of all bounded operators $\mathscr{X}, \mathscr{K}(\mathscr{H})$ the ideal of compact operators, $\mathcal{O}(\mathscr{H})$ the quotient algebra $\mathcal{L}(\mathscr{H}) / \mathscr{K}(\mathscr{H})$, and π the canonical homomorphism of $\mathcal{L}(\mathscr{H})$ onto $\mathcal{C}(\mathscr{H})$. Let X be a compact Hausdorff space and $C(X)$ be the algebra of all complex-valued continuous functions on X. Brown, Douglas and Fillmore initiated in their pioneer work [2] the study of the group Ext X consisting of unitary equivalence classes of unital ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow \mathbb{U}(\mathscr{H})$. The group Ext X has many interesting features. Recently the theory of Ext has been generalized to non-commutative $C^{*}-$ algebras with remarkable successes by work of many mathematicians (see for example [1]).
1.2 Let \mathscr{M} be a II_{a}-factor acting on H. It is well-known that M possesses an ideal analogous to $K(H)$; namely, the norm-closed two sided ideal $\mathcal{X}(\mathscr{H})$ generated by all finite projections in \mathbb{M}. Let $\mathbb{O}(\mathbb{M})$ denote the quotient algebra and π the canonical homomorphism. Then one can consider unitary equivalence classes of unital ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow @(M)$ and can ask whether there exists a parallel theory in the context of II_{∞}-factors. Fillmore [5] and Cho [4] indeed succeeded in developing extension theory to relative to II_{∞}-factors. Then the obvious question would be: is there any fruitful theory of extension relative to a I_{∞}-factor for separable nuclear C^{*}-algebras? Arveson's observation and Choi-Effros lifting theorm of completely positive maps (see for example [1]) make it possible that the unitary equivalence classes of unital ${ }^{*}$-monomorphism $\tau: A \rightarrow \mathcal{C}(M)$ for a separable nuclear $C^{*}-$ algebra forms an abelian group provided that one can have the Voiculescu's non-commutative Weyl-von Neumann theorem analogue in the context of II_{x}-factors.
1.3 In this note, we examine lifting problem of unital *-monomorphism $\tau: A \rightarrow \mathbb{C}(M)$. Similar lifting problem for the classical Calkin algebra was
considered earlier by Thayer [6]. Our result says that for UHF algebras A any unital ${ }^{*}$-monomorphism $\tau: A \rightarrow \mathbb{C}(\mathbb{M})$ can be lifted to unital ${ }^{*}$-monomorphism σ such that the following diagram commutes:

§ 2. Liftings for finite-dimensional \boldsymbol{C}^{*}-algebra

2. 1 Let A be a C^{*}-algebra. A family of partial isometries $\left\{e_{i j}\right\}^{n_{i, j=1}}$ of A such that

$$
\begin{aligned}
& e_{i j} e_{k m}=0 \text { for } j \neq k \\
& e_{i j} e_{k m}=e_{i m} \text { for } j=k \\
& e_{i j}^{*}=e_{j i}^{*}
\end{aligned}
$$

is called a system of matrix units in A.
For example if A is a full matrix algebra M_{n}, then the matrices $e_{i j}$ having entries zero except in the (i, j)-position and having 1 in the (i, j)-position forms a matrix units in M_{n}. Let $\left\{u_{i j}\right\}^{n_{i, j=1}}$ be a matrix units in $\mathcal{O}(\mathbb{M})$. Then it is easy to see that any system of matrix units $\left\{e_{i j}\right\}$ in M_{n} determines a unique ${ }^{*}$-monomorphism $\tau: M_{n} \rightarrow \mathbb{C}(M)$ such that $\tau\left(e_{i j}\right)=u_{i j}$ for all $i, j=$ $1,2, \ldots, n$. In order to find ${ }^{*}$-monomorphism $\sigma: M_{n} \rightarrow M$ such that $\tau=\pi^{\circ} \sigma$, we begin with the following lemma, which is type II_{∞} version of Calkin's lifting theorem.
2.2 LEMMA. Suppose that p and q are projections in $\mathcal{O}(\mathbb{M})$ such that $p \leq q$. Then there exist projections P and Q in M such that $P \leq Q$ and $\pi(P)=p, \pi(Q)=q$.

Proof. First we will prove that for any projection q in $\mathcal{C}(M)$ there exists a projection Q in \mathbb{M} with $\pi(Q)=q$. To prove this, we choose X in K such that $\pi(X)=q$. Since $\pi\left(X+X^{*} / 2\right)=q$, we may and do assume that X is a self-adjoint element of M. Let Q be the spectral projection of X corresponding to the interval $\left(\frac{1}{2}, \infty\right)$. Then the same arguement as in $[2$, Theorem 2.4] tells us that $X-Q$ is in the compact ideal $\mathscr{K}(\mathscr{M})$. Hence $\pi(Q)=q$. Since $p \leq q, p$ belongs to $q \mathbb{C}(\mathbb{M}) q$. But $\pi(Q \mathbb{Q})=q \mathbb{C}(\mathbb{M}) q$ and hence there exists a p in $Q M Q$ such that $\pi(P)=p$. This completes the proof.
2.3 Lemma. Suppose that P and Q are orthogonal projections in \mathbb{M}. Let u be a partial isometry in $\mathbb{C}(\mathbb{M})$ such that $u^{*} u=\pi(P), u u^{*}=\pi(Q)$. Then there
exists a partial isometry U in M with $\pi(U)=u, U^{*} U \leq P$ and $U U^{*} \leq Q$.
Proof. Choose X in \mathscr{m} with $\pi(X)=u$. Let $\pi(P)=p$ and $\pi(Q)=q$. Since $\pi(Q X P)=q \pi(X) p=q u p=u$, we may assume that X belongs to $Q M P$. Let $X=V\left(X^{*} X\right)^{1 / 2}$ be its polar decomposition. Since $\pi\left(\left(X^{*} X\right)^{1 / 2}\right)=\left(u^{*} u\right)^{1 / 2}=$ $\pi(P)$, by 2.2 there exists a projection E in \mathbb{M} with $\pi(E)=\pi(P)$, namely the spectral projection of $\left(X^{*} X\right)^{1 / 2}$ corresponding to $\left(\frac{1}{2}, \infty\right)$. Moreover E is a subprojection of the range projection of $\left(X^{*} X\right)^{1 / 2}$. Thus E is a subprojection of the initial projection of the partial isometry V. Hence $V E$ is a partial isometry with the desired properties.
2.4 Lemma. Let $\left\{e_{i j}\right\}^{n_{i, j=1}}$ be a system of matrix units in $@(\mathbb{M})$. Then there exists a system of matrix units $\left\{E_{i j}\right\}^{n}{ }_{i, j=1}$ in \mathbb{M} such that $\pi\left(E_{i j}\right)=e_{i j}$ for all $i, j=1,2, \ldots, n$.

Proof. We will prove this by the principle of mathematical induction. For $n=2$, by 2.2 we can choose two orthogonal projections F_{11} and F_{22} in M with $\pi\left(F_{11}\right)=e_{11}$ and $\pi\left(F_{22}\right)=e_{22}$. By 2.3 there exists a partial isometry E_{21} in M such that $\pi\left(E_{21}\right)=e_{21}, E_{21}{ }^{*} E_{21} \leq F_{11}, E_{21} E_{21}{ }^{*} \leq F_{22}$. Since $F_{11}-E_{21}{ }^{*}$ E_{21} and $F_{22}-E_{21} E_{21} *$ are finite projections, we have $\pi\left(F_{11}\right)=\pi\left(E_{21}{ }^{*} E_{21}\right)$ and $\pi\left(F_{22}\right)=\pi\left(E_{21} E_{21}{ }^{*}\right)$. Finally we put $E_{11}=E_{21}{ }^{*} E_{21}$ and $E_{22}=E_{21} E_{21}{ }^{*}$. Then $\left\{E_{i j}\right\}, 1 \leq i, j \leq 2$ is the desired system of matrix units. Now suppose that a system of matrix units $\left\{F_{i j}\right\}, 2 \leq i, j \leq n$, has been chosen so that $\pi\left(F_{i j}\right)$ $=e_{i j}, 2 \leq i, j \leq n$. Choose a projection F_{11} which is orthogonal to $F_{22}+F_{33}+$ $\ldots+F_{n n}$ (possible by the proof of 2.2). Apply 2.3 to get a partial isometry E_{21} such that $\pi\left(E_{21}\right)=e_{21}, E_{21}{ }^{*} E_{21} \leq F_{11}, E_{21} E_{21}{ }^{*} \leq F_{22}$. We put $E_{11}=E_{21}{ }^{*} E_{21}$, $E_{22}=E_{21} E_{21}{ }^{*}$. Then $\pi\left(E_{11}\right)=\pi\left(F_{11}\right)$ and $\pi\left(E_{22}\right)=\pi\left(F_{22}\right)$. We put $E_{i 1}=$ $F_{i i-1} \ldots F_{32} E_{21}$, for $i=3,4, \ldots, n$. Then $\left\{E_{i 1}\right\}, 2 \leq i \leq n$, will generate the desired system of matrix units.
2.5 Let P be a finite projection in $\mathcal{L}(\mathscr{H})$. Let n be a natural number. Then there exist mutually orthogonal equivalent projections $P_{1}, P_{2}, \ldots, P_{n}$ such that $P_{1}+P_{2}+\ldots+P_{n}=P$ if and only if n divides the vector space dimension of the range space of P.

However, in a I_{∞}-factor \mathbb{M} for any finite projection P and for any natural number n there exist mutually orthogonal equivalent projections $P_{1}, P_{2}, \ldots, P_{n}$ such that $P_{1}+P_{2}+\ldots+P_{n}=P$. This distiction makes the following theorem possible.

[^0]Proof. Let $\left\{e_{i j}\right\}^{n}{ }_{i, j=1}$ be a system of matrix units for M_{n}. It suffices to show that there exists a system of matrix units $\left\{F_{i j}\right\}$ in $M_{\text {such }}$ that $\pi\left(F_{i j}\right)=$ $\tau\left(e_{i j}\right)$ and $F_{11}+F_{22}+\ldots+F_{n n}=1$. Let $E_{i j}$ be a system of matrix units in M which lifts $\tau\left(e_{i j}\right)$ (it is possible by 2.4). Since $\pi\left(E_{11}+\ldots+E_{n n}\right)=1$, the projection $P=1-\left(E_{11}+\ldots+E_{n n}\right)$ is finite in M. Choose mutually equivalent orthogonal projections $P_{1}, P_{2}, \ldots, P_{n}$ such that $P_{1}+P_{2}+\ldots+P_{n}=P$. Let $U_{i 1}$ be a partial isometry connecting P_{1} to P_{i}. Note that P_{i} and $U_{i 1}$ are compact elements in m. Set $F_{i i}=E_{i i}+P_{i}$ and $F_{i 1}=E_{i 1}+U_{i 1}$. Then $\left\{F_{i 1}\right\}_{2<i<n}$ will generate a system of matrix units $\left\{F_{i j}\right\}$ with $F_{11}+F_{22}+\ldots+F_{n n}=1$. This completes the proof.

Since any finite dimensional C^{*}-algebra is a direct sum of full matrix algebras, we get:
2.7 Corollary. Let A be a finite dimensional C^{*}-algebra. Let $\tau: A \rightarrow \mathbb{C}(M)$ be a unital ${ }^{*}$-monomorphism. Then there exists a unital ${ }^{*}$-monomorphism $\sigma: A$ \rightarrow M such that $\tau=\pi \circ \sigma$.
2.8 LEMMA. Let A be a full matrix algebra. Suppose that σ_{1} and σ_{2} are unital *-monomorphisms of A into m. Then there exists a unitary U in \mathbb{M} such that $\sigma_{1}(x)=U^{*} \sigma_{2}(x) U$ for all x in A.

Proof. Let $\left\{E_{i j}\right\}_{1 \leq i, j \leq n}$ be a system of matrix units for A. We put $e_{i j}=$ $\sigma_{1}\left(E_{i j}\right)$ and $f_{i j}=\sigma_{2}\left(E_{i j}\right)$. It suffices to show that there exists a unitary U in A such that $e_{i j}=U^{*} f_{i j} U$ for all $1 \leq i, j \leq n$. To this end, since M is a σ-finite $I I_{\infty}$-factor, the infinite projections e_{11} and f_{11} are equivalent. Hence there exists an element V of \mathbb{M} such that $V^{*} V=e_{11}$ and $V V^{*}=f_{11}$. We put $\mathrm{U}=\sum_{i=1}^{n}$ $f_{i 1} V e_{1 i}$. Then it is easy to check that $e_{i j}=U^{*} f_{i j} U$. This completes the proof.
2.9 COROLlARy. Let A be a finite dimensional C^{*}-algebra. Let τ_{1}, τ_{2} : $A \rightarrow \mathbb{C}(\mathbb{M})$ be unital ${ }^{*}$-monomorphisms. Then there exists a unitary U in M such that

$$
\tau_{1}(x)=\pi(U) * \tau_{2}(x) \pi(U)
$$

for all x in A.
Proof. According to Corollary 2.7, each τ_{i} has a unital lifting σ_{i} satisfying $\tau_{i}=\pi \circ \sigma_{i}, i=1,2$. Application of Lemma 2.8 to summand by summand will give us a unitary U implementing the requirement.
2. 10 Remark. Two extensions (i.e., unital ${ }^{*}$-monomorphisms) τ_{1}, τ_{2} : $A \rightarrow \mathbb{C}(M)$ are said to equivalent if there exists a unitary U in M such that $\tau_{1}(x)=\pi(U)^{*} \tau_{2}(x) \pi(U)$ for all x in A. The sum of $\tau_{1}+\tau_{2}$ is the extension $\tau: A \rightarrow \mathscr{C}(\mathbb{M})$ defined as follows: choose isometries V_{1} and V_{2} in \mathbb{M} such
that $V_{1} V_{1}{ }^{*}+V_{2} V_{2}{ }^{*}=1$, and let

$$
\left(\tau_{1}+\tau_{2}\right)(x)=\pi\left(V_{1}\right) \tau_{1}(x) \pi\left(V_{1}^{*}\right)+\pi\left(V_{2}\right) \tau_{2}(x) \pi\left(V_{2}^{*}\right)
$$

for all x in A. The equivalence class of $\tau_{1}+\tau_{2}$ is independent of the choice of isometries in the definition. Let Ext ${ }^{n /} A$ denote the equivalence classes of extensions. Then for commutative C^{*}-algebra $A \operatorname{Ext}^{\prime \pi} A$ is an abelian group (see [4] for details). Corollary 2.9 can be restated as follows: For finite dimensional C^{*}-algebra A, the Ext ${ }^{\pi} A$ is always trivial group.

We close this section with the following.
2. 11 Theorem. Suppose that \AA_{1} and A_{2} are full matrix algebras and that A_{1} is a subalgebra of A_{2} with the same unit. If $\tau_{1}, \tau_{2}: A_{2} \rightarrow \mathbb{C}(\mathbb{M})$ is a unital*-monomorphism and $\sigma_{1}: A_{1} \rightarrow \mathbb{M}$ is a unital ${ }^{*}$-monomorphism such that $\pi \circ \sigma_{1}=\tau_{1}$, and then $\tau_{2} / A_{1}=\tau_{1}$ there exists a unital ${ }^{*}$-monomorphism $\sigma_{2}: A_{2} \rightarrow M$ such that $\pi \circ \sigma_{2}$ $=\tau_{2}$ and $\sigma_{2} \mid A_{1}=\sigma_{1}$.

Proof. Let $\left\{e_{i j}\right\}^{n_{i, j=1}}$ be a system of matrix units for A_{1} and $\left\{f_{i j}\right\}^{m_{i, j=1}}$ be a system of matrix units for A_{2}. Since $A_{1} \subset A_{2}, n$ devides m. Let $m=k n$. By rearranging $f_{i j}$ if necessary, we can assume that $e_{11}=f_{11}+f_{22}+\ldots+f_{k k}, e_{22}=$ $f_{k+1 k+1}+\ldots+f_{2 k 2 k}, \ldots$, By applying 2.5 to $\sigma_{1}\left(e_{11}\right), \tau_{2}\left(f_{i i}\right), i=1,2, \ldots, k$; $\tau_{2}\left(f_{i 1}\right), \quad i=2, \ldots, k$, we get a system of matrix units $\left\{F_{i j}\right\}_{1 \leq i, j \leq k}$ in m such that

1) $F_{11}+F_{22}+\ldots+F_{k k}=\sigma_{1}\left(e_{11}\right)$
2) $\pi\left(F_{i j}\right)=\tau_{2}\left(f_{i j}\right), \quad 1 \leq i, j \leq k$

For each $j=2,3, \ldots, n, i=2,3, \ldots, k$, we put
3) $F_{1+(j-1) k, 1}=E_{j 1} F_{11}$ and $F_{i+(j-1) k, 1}=E_{j 1} F_{i 1}$

Then these partial isometries $\left\{F_{s 1}\right\}_{2 s s \leq m}$ together with properties (1) and (2) furnish us with the desired ${ }^{*-m o n o m o r p h i s m ~} \sigma_{2}: A_{2} \rightarrow \pi$

§ 3. Liftings for UHF algebras

A C^{*}-algebra of with unit is uniformly hyper-finite(UHF) if there is an increasing sequence $\frac{\left\{A_{n}\right\}}{\alpha}$ of full matrix subalgebras containing the same unit of A and such that $\bigcup_{n=1} A_{n}=A$.

Theorem. Let A be a UHF algebra with $\overline{U A}_{n}=A$, where A_{n} is increasing sequence of full matrix subalgebras. Let $\tau: \nrightarrow \rightarrow(\mathbb{M})$ be a unital ${ }^{*}$-monomorphism. Then there exists a unital ${ }^{*}$-monomorphism $\sigma: A \rightarrow \nsim$ such that $\pi \circ \sigma=\tau$.

Proof. Let σ_{1} be a unital ${ }^{*}$-monomorphism of A_{1} into π such that $\pi \circ \sigma_{1}=$ $\tau \mid A_{1}$ (such a σ_{1} exists by 2.6). By 2.11 we can extend σ_{1} to a ${ }^{*}$-monomor-
phism σ_{2} of A_{2} into M such that $\pi \circ \sigma_{2}=\tau \mid A_{2}$. Thus by keeping doing this process, we get a unital ${ }^{*}$-monomorphism $\bar{\sigma}: \overline{U A}_{n} \rightarrow m$ such that $\pi \circ \sigma=$ $\tau \mid \cup A_{n}$. Let σ be the unique extension of $\bar{\sigma}$ to A. Now it is clear that $\pi^{\circ} \bar{\sigma}=\tau$. This completes the proof.

References

1. W. B. Arveson, Notes on extensions of C^{*}-algebras, Duke Math. J. 44 (1977), 329355.
2. L. G. Brown, R.G. Douglas and P.A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, Lecture Notes in Mathematics, 345, Springer-Verlag, New York, 1973.
3. J.W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-872.
4. S. J. Cho, Extensions relative to a II_{∞}-factor, Proc. Amer. Math. Soc. 74 (1979), 109-112.
5. P. A. Fillmore, Extensions relative to semi-finite factors, Istituto Nazionale di Alta Mathematica, Simp. Math. 20 (1976), 486-496.
6. F. J. Thayer, Obstructions to Lifting *-monomorphisms into the Calkin algebra, [1]. J. of Math. 20 (1976) No. 2, 322-328.

Seoul National University

[^0]: 2.6 Theorem. For any unital ${ }^{*}$-monomorphism $\tau: M_{n} \rightarrow @(\mathbb{M})$, there exists a unital ${ }^{*}$-monomorphism $\sigma: M_{n} \rightarrow M$ such that $\tau=\pi \circ \sigma$.

