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GENERALIZED FUNDAMENTAL GROUPS
OF CONTINUOUS LOOPS

By KARL R. GENTRY AND HUGHES B. HOYLE, In

1. Introduction

Let Y be a topological space and let Yo E Y. Then C (Y, Yo) will be used
to denote the set of all continuous loops in Y at Yo. The idea of using con­
tinuous functions as relating functions on C (Y, Yo) to get an equivalence
relation on C (Y, Yo) has long been in existence, and extensive studies have
been made of the resulting homotopy groups.

In this paper, an admitting homotopy relation is defined, which in general,
turns out to be a larger class of relating functions than the class of all con­
tinuous functions. This in turn leads to possibly more loops in each equi­
valence class and thus to fewer equivalence classes. An admitting homotopy
relation is then used to obtain a generalized homotopy group which is usually
smaller than the fundamental group [see Theorem 4].

Most types of non-continuous functions, including almost continuous func­
tions [2J, c-continuous functions [3J, and connectivity mapt [17J, provide
an admitting homotopy relation.

2. Admitting homotopy relation

DEFINTION 1. Let N be a class of functions with the following four proper­
ties:

( i) N contains the class of all continuous functions,
(ii) if X, Y, and Z are topological spaces, 1: X ---4 Y is in Nand g : Y---4Z

is a homeomorphism, then gf : Y ---4 Z is in N,
(iii) if X, Y, and Z are topological spaces, f: X---4 Y is a homeomorphism,

and g : Y---4Z is in N, then g f : X ---4 Z is in N, and
(iv) if a, b, c, d, a, and f3 are numbers such that a < b< c < d and a<f3 and

if [a,dJX[a,f3J, [a,bJX[a,f3J, [c,dJX[a,f3J, and [b,cJX[a,f3J have the
relative topology induced from the usual topology on the plane, and if

1:[a, dJ X [a, f3J ---4 Y is a function such that 11 [a, b] X [a, p] and fl Cc, d] x [a, p]
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are in Nand fj [b,cJx [a,.sJ is continuous, then f is in N.

Then N is called an admitting homotopy relation (AHR).

THEOREM 1. Let N be an AHR. Let a, b, c, d, a and f3 be numbers such that
a<b<c<d and a<f3, and let Y be a topological space. Let f : [a, f3J X [a, dJ

---+ Y be a function such that fl [a,.BJ X [a, bJ and fl [a,.BJ X [c, dJ are in Nand

f I[a,.sJ X Cb, cJ is continuous. Then f is in N.

Proof. Define g : [a, dJ X [a, f3] ---+ [a, f3J X [a, dJ by if (x, y) E [a, dJ X [a, f3],
then g(x, y) = (y, x). Then g is a homeomorphism. By Definition 1, parts
(iv) and (iii) , fg is in N. By Definition 1, part (iii) , f-fgg-l is in N.

DEFINITION 2. Let Y be a topological space and let Yo E 1': Let I be the
closed unit interval [O,lJ with the usual topology and let C(Y, Yo) be the
set of all continuous functions f: I---+ Y such that f(O) =Yo f(l). Let N be
an AHR. Let f,gEC(Y,yo). We say f is N-homotopic to g modulo Yo,
denoted by F=::· yog, provided there is an element F : IXI ---+ Y in N such that
F(x,O) f(x) , F(x,l)=g(x), and F(O, t)=yo=F(l, t) for all xEI, tEl.

THEOREM 2. Let N be an AHR. The relation =::: Yo is an equivalence relation
on C(Y, Yo).

Proof. Let fEC(Y,yo). Since f '-"""'Yo f ['-"""'yO denotes the usual homotopy
relation], and since every continuous function is in N, f=:::Y6 f .

Let f,gEC(Y,yo) and suppose that f.-......,yog. Then there is an element F:
IXI---+ Y in N such that F(x, 0) f(x) , F(x, 1) =g(x) , and F(O, t) =yo=F
(1, t) for all XEl, tEl. Define G : IX 1---+ Y by G(x, t) =F(x, 1-t) for all
(x, t) EIXl. Then G(x, 0) =F(x, 1) =g(x) and G(x, 1) =F(x, 0) f(x) for
all xEI and G(O, t) =F(O, I-t) =yo=F(l, I-t) =G(I, t) for all tEl. Define
K: IXl---+IXI by K(x, t) = (x, I-t) for all (x, t) EIXl. Then K is a homeo­
morphism and thus FK is in N. Butif (x, t) ElXI, then G(x, t) =F(x, I-t)
=F(K(x,t»=FK(x,t) and hence G is in N. Hence, g=:::Yof.

Let f, g, hEC(Y, Yo) and suppose that f=:::Yog and g=:::Yoh. Then there are
functions F,G: IXI---+Y in N such that F(x,O) f(x), F(x,I)=g(x), and
F(O,t)=yo=F(I,t) for all xEl, tEI and G(x,O)=g(x), G(x,I)=h(x),
and G(O, t) =yo=G(l, t) for all xEI, tEl, Define H: IXI ---+ Y by

jF(x,4t) if xEI, 0::;;tsl/4
H(x, t) = g(x) if xEI, I!4st::;;3!4.

G(x,4t -3) if xEI, 3!4st::;;I
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Define a : IX[O, 1/4J ~ IXI by a(x, t) = (x, 4t) for all (x, t) EIX[O, 1/4J
and define f3: IX[3/4,I]~IXI by p(x,t)=(x,4t-3) for all (x,t)EIX

[3/4,1]. Then HI
I

[ J=Fa and HI
I

[ J=G/3. Since F and G are in. x 0,1/4 x 3/4,1

N and a and /3 are homeomorphisms, Hl
j

[ / J and HI I [ J I) are in N.
Ix 0,14 x 3/4,1

Since g is continuous, HI [ is continuous. By theorem 1, His
Ix 1/4,3/4J

in N. Now H(x, 0) =F(x, 0) =f(x) and H(x, 1) =G(x, 1) =h(x) for all
xEI. Also

1
F(0,4t)

H(O, t) = gCO)
G(0,4t-3)

for all t E I, and

j
F(1,4t)

H(l, t) = g(l)
GO,4t-3)

if 0S:tS:1/4,
if 1/4S:tS:3/4 = Yo,
if 3/4S:tS:1

if 0s: t s: 1/4,
if 1/4S:tS:3/4 = Yo,
if 3/4S:tS:1

for all tEl. Therefore, fC:=Yoh. Hence, C:=Yo is an equivalence relation on C
(l', Yo).

DEFINITION 3. Let f, g E C (l', Yo). Then f ::;. g is the function in C (l', Yo)
defined by if x E I, then

1
f(4x)

(f~g)(x)= Yo
g(4x-3)

if 0S:xS:1/4,
if 1/4S:xS:3/4,
if 3/4S:xS:1.

The definition of :;;: is made this way instead of the usual way as a ma­

tter of convenience. Many of the proofs are shorter with this definition.
Let N be an AHR. The equivalence relation ~Yo breaks C(l', Yo) into
disjoint equivalence classes. Let N (l', Yo) be this set of equivalence classes.
If [fJ, [gJEN(l',yo), then we define [fJ . [gJ to be [f :::g].

LEMMA 3.1 Let N be an AHR. Let f,gEC(l',yo). If f*g is defined in the
usual manner

1. e. if xE X, then

(f*g) (x) = {f (2x)
g(2x-1)

if OS:xS: 1/2,
if 1/2S:xS:1

then f :;;:g "-'Yo f*g where by "-'Yo is meant the usual homotopy relation.
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Proof. Define H: IX1-Y by if (x, t) EIXI, then

if t?:4x-1

otherwise.

if t~-4x+3

Then H is the required homotopy.

LEMMA 3.2. Let N be an AHR. If [f], [g]EN(Y,yo), then [f]· [g] is
well-defined.

Proof. Let f1J2E [f ] and gh g2E [g], Then there are functions F and G
in N such that F: IXI- Y, G: IXI-+ Y, F(x,O) f1 (x) , F(x,l) f2(X) ,
F(O, t)=yo=F(l, t), G(x, 0) =gl(X) , G(x,1)=g2(x), and G(O,t)=yo=G
(1, t) for all xEI, tE!. Define a function H: IXI- Y by if (x, t) EIXI,
then

1
F(4x, t) if Osxsl/4

H(x, t) = Yo if l/4sxs 3/4.
G(4x-3, t) if 3/4sxs1

Then H(x, 0) = Cfdfg1) (x), H(x, 1) = (f2#g2) (x), and H(O, t) =yo=H(l, t)
for all xEI, tE!. Define h: [0, l/4]XI-+IXI by if (x, t) E[O, l/4]XI,
then hex, t) = (4x, t) and define k : [3/4, l]XI-+IXI by if (x, t) E[3/4, l]XI,

then k(x,t)=(4x-3,t). Then HI[ IJ I=Fh and HI[ J =GK.
0, 1 4 x 3/4, 1 x I

Since hand k are homeomorphisms, by definition 1, part (iii) , HI
[0, 1I4J xl

qnd H/[3/4,lJXI are in N. Since H![1I4, 3/4JXI=Yo, it is continuous. Hence,

by Definition 1, part (iv) , H is in N. Thus, f1 # gl =::: Yo f2 # g2 . Thus,
[f1#gl]=[f2#g2] and hence [f] . [g] is well-defined.

DEFINITION 4. Let N be an AHR. The identity element of N (Y, Yo), de­
noted by [e], is the equivalence class which contains the function e: 1-+ Y
defined by if xEI, then e(x) =Yo.

LEMMA 3.3. Let N be an AHR. If [f]EN(Y, Yo), then [f] . [eJ=[f].

Proof. [fJ· [eJ=[f #eJ=[f*e]=[fJ.

DEFINITION 5. If [fJEN(Y,yo), then [fJ-1 is the element of N(Y,yo)
containing the function g: I-+Y defined by if xE I, then g(x) f(l-x).

LEMMA 3. 4. Let N be an AHR.
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If [fJEN(Y,yo), then [fJ· [fJ-1=[e].

Proof. Let [fJ E N(Y,yo). Define g: I -Y by if xEI, then g(x) =f(l
-x). Then [fJ . [fJ-1=[fJ . [gJ=[f :;j:gJ=[f *gJ= [e].

THEOREM 3. Let Y be a space, let yoE Y, and let N be an AHR. Then
(N( Y, Yo), . ) is a group.

Proof. Let [fJ, [gJ, [hJEN(Y, Yo). Then ([fJ . [gJ) . [hJ=[f :j:;:gJ .
[hJ=[f*gJ· [hJ=[(f*g) #hJ=[(f*g)*hJ=[f*(g*h)]=[f:;;: (g*h)J=[fJ
. [g*hJ=[fJ - [g#hJ=[fJ . ([gJ . [hJ). By Lemmas 3.2, 3.3, and 3.4,
(N( Y, Yo), .) is a group.

From now on, the symbol N( Y, Yo) will mean the set N( Y, Yo) together
with the operation' and N(Y, Yo) will be called the first N group of Y with
respect to Yo-

THEOREM 4. Let Y be a space, let yoE Y, and let N be an AHR. Then
there is an epimorphism A : 0 1(Y, Yo) - N (Y, Yo) .

Proof. Let [f JE 0 1(Y, Yo). Define A([f J) to be the equivalence class in
N(Y, Yo) which contains J.

Let [f]E01(Y,yo) and let f,gE[fJ. Then f"-'yog and thus fc:::.Yog. Th­
us, A is well-defined.

Let MEN(Y,yo) and let f EM. Then the element [fJE01(Y,yo) has
the property that A ([ f J) = M. Therefore, A is onto.

Let [fJ, [g]E01(Y,yo). Then A([f] . [gJ) =A([f*g]). Thus A([f] .
[gJ) is the equivalence class containing f*g in N(Y, Yo). Now A ([f J) is
the equivalence class containng f in N( Y, Yo) and A([gJ) is the equivalence
class containing g in N(Y,yo). Hence, A([fJ)· A([gJ) is the equivalence
class in N(Y, Yo) containing f :;j:g. By lemma 3.1, f*g "-'yof :;;:g and there­
fore, f*gc:::.Yof #g' Hence, A([f]· [gJ)=A([fJ) . A([gJ), and A is anepi­
morphism.

The proofs of the following two theorems are similar to proofs when work­
ing with usual homotopy groups and thus are omitted.

THEOREM 5. If N is an AHR. and if X and Yare spaces, xoES, yoE
Y, and H is a homeomorphism from X onto Y with H(xo) =Yo, then N(X, xo)
is isomorphic to N (Y, yo).

THEOREM 6. If N is an AHR and Y is a pathwise connected space and Yo,
Y1 E Y, then N( Y, Yo) is isomorphic to N( Y, Y1)'
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3. Questions and comments

In [5J it is shown that connectivity maps [17J form an admitting homo­
topy relation. It should be noted that here one discovers the reason for the
wording in the fourth part of definition of an admitting homotopy relation.
For it is not the case that if you have a function which is a connectivity
map on the two halves of the square and continuous on the middle line, that
the function must be a connectivity map on the entire square.

In [5J it is also shown that if Y is a convex subspace of a real linear
topological space, then almost continuous functions [Stallings, 17J form an
admitting homotopy relation.

In [4J it is shown that c-continuous functions form something stronger
than an admitting homotopy relation. In [4J it is further shown that the
first c-continuous group is sometimes non-trival and sometimes different from
the usual fundamental group.

Other non-continuous functions which form an admitting homotopy rela­
tion are: almost continuous functions [Singal, 16J, almost continuous func­
tions [Frolik, 2J, almost continuous functions [Husain, 7J, almost c-conti­
nuoU3 functions [8J, H-continuous functions [10J, o-continuous functions [13J,
somewhat continuous functions [6J, weakly continuous functions [9J, f)-con­
tinuous functions DJ, quasi continuous functions [nJ, and feebly contin­
uous [12J.

It is known by the authors that somewhat continuous functions are not fr­
uitful in this context. Namely that the first somewhat continuous group is
always trival. In this context very little is known about the other non-con­
tinuous functions mentioned in the preceding paragraph.

It would be of interest to know how much if any the concept of admitting
homotopy relations helps to distinguish spaces. A place to start would be to
pick various examples for which the fundamental group is known and calcu­
late the first N-groups for the various types of known admitting homotopy
relations.
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