A Common Fixed Point Theorem in Saks Spaces

By Keun Saeng Park Gyeongsang National University, Jinju, Korea

Resently, some fixed point and common fixed point theorems for commuting mappings in complete metric spaces are proved by S.S. Chang [5], K.M. Das and K.V. Naik [6], K. Iseki [7], G. Jungck [8,9] and S.L. Singh [13,14,15].

In this paper, applying some common fixed point theorems of K. Iseki [7] and S.L. Singh [13] for commuting mappings in a space with two metric, we shall prove a common fixed point theorem in Saks spaces.

Some properties and definitions for Saks spaces are given in [1-4, 10-12, 16]

Let X be a linear space. A real-valued function $\|\cdot\|$ defined on X will be called a B-norm if it satisfies the following conditions:

- (1) ||x|| = 0 if and only if x = 0,
- $(2) ||x+y|| \leq ||x|| + ||y||,$
- (3) $\|\alpha x\| = |\alpha| \|x\|$, α being any real number.

Each real-valued function | | | satisfying the above conditions (1), (2) and the following one:

(4) if the sequence $\{\alpha_n\}$ of real numbers converges to a real number α and $\|x_n - x\| \to 0$ as $n \to \infty$, then $\|\alpha_n x_n - \alpha x\| \to 0$ as $n \to \infty$ will be said to be an F-norm.

A two-norm space is a linear space X with two norms, a B-norm $\|\cdot\|_1$ and an F-norm $\|\cdot\|_2$, and denoted by $(x, \|\cdot\|_1, \|\cdot\|_2)$.

If two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are defined on X and $x_n \in X$, $\|x_n\|_1 \to 0$ as $n \to \infty$ implies $\|x_n\|_2 \to 0$, then the norm $\|\cdot\|_1$ is called non-weaker than $\|\cdot\|_2$ in X (denoted by $\|\cdot\|_2 \le \|\cdot\|_1$). If $\|\cdot\|_2 \le \|\cdot\|_1$ and $\|\cdot\|_1 \le \|\cdot\|_2$, then the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

A sequence $\{x_n\}$ of points in a two-norm space $(x, \|\cdot\|_1, \|\cdot\|_2)$ is said to be γ -convergent to x_0 in X (denoted by $x_n \xrightarrow{\gamma} x_0$ or γ - $\lim_{n \to \infty} x_n = x_0$) if $\sup_{n} \|x_n\|_1 < \infty$ and $\lim_{n \to \infty} \|x_n - x_0\|_2 = 0$ and a sequence

 $\{x_n\}$ in a two-norm space is said to be γ -Cauchy if $(x_{p_n}-x_{q_n})\stackrel{\gamma}{\to} 0$ as $p_n, q_n \to \infty$.

A two-norm space is called γ -complete if for every γ -Cauchy sequence $\{x_n\}$ in two-norm space, there exists $x_0 \in X$ such that $x_n \xrightarrow{\gamma} x_0$.

Let X be a linear set and suppose that $\|\cdot\|_1$ is a B-norm and $\|\cdot\|_2$ is an F-norm on X. Let $X_s = \{x \in X; \|x\|_1 < 1\}$ and define $d(x, y) = \|x - y\|_2$ for all x, y in X_s . Then d is a metric on X_s and the metric space (X_s, d) will be called a Saks set. If (X_s, d) is complete, it will be called a Saks space and denoted (X_s, d) by $(x, \|\cdot\|_1, \|\cdot\|_2)$.

In (10), W. Orlicz has proved the following:

Theorem 1. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space. Then the following statements are

equivalent:

- (1) $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ on X.
- (2) $(X, \|\cdot\|_1)$ is a Banach space and $\|\cdot\|_2 \ge \|\cdot\|_1$ on X.
- (3) $(X, \|\cdot\|_2)$ is a Frechet space and $\|\cdot\|_1 \ge \|\cdot\|_2$ on X.

Now, we are ready to give our main theorem.

Theorem 2. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space which $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ on X. If two commuting mappings S and T from X into itself satisfy the following conditions:

- (1) $S(X) \subset T(X)$,
- (2) $||Sx Sy||_2 \le \alpha \{||Tx Sx||_2 + ||Ty Sy||_2\} + \beta \{||Tx Ty||_2 + ||Ty Sx||_2\} + \gamma ||Tx Ty||_2 \text{ for all } x, y \text{ in } X, \text{ where } \alpha, \beta, \gamma \text{ are non-negative and } 2\alpha + 2\beta + \gamma < 1,$
 - (3) S and T are continuous with respect to $\|\cdot\|_1$.

Then S and T have a unique common fixed point in X.

Proof. From (1), we can define a sequence $\{x_n\}$ of points in X as follows: For $x_0 \in X$, let x_1 be such that $Tx_1=Sx_0$, in general, choose x_{n+1} so that $Tx_{n+1}=Sx_n$.

Then by (2), we have $||Tx_{n+1} - Tx_n||_2 = ||Sx_n - Sx_{n-1}||_2 \le \alpha \{ ||Tx_n - Sx_n||_2 + ||Tx_{n-1} - Sx_{n-1}||_2 \} + \beta \{ ||Tx_n - Sx_{n-1}||_2 + ||Tx_{n-1} - Sx_n||_2 \} + \gamma ||Tx_n - Tx_{n-1}||_2 \le p ||Tx_n - Tx_{n-1}||_2 \le p^n ||Tx_1 - Tx_0||, \text{ where } 0 Therefore by Theorem 1, since <math>||Tx_{n+1} - Tx_n||_2 \to 0$ as $n \to \infty$, $||Tx_{n+1} - Tx_n||_2 \to 0$. This shows that the sequence $||Tx_n||$ is a Cauchy sequence with respect to $||\cdot||_1$ and from Theorem 1, since $||Tx_n||_1 \to 0$ is a Banach space, $||Tx_n||_1 \to 0$ as a limit point t in X, i.e., $||Tx_n - t||_1 \to 0$ as $n \to \infty$ and also in view of $||Tx_n - t||_1 \to 0$ as $||Tx_n - t||_1 \to 0$. But since $||Tx_n - t||_1 \to 0$ and $||Tx_n - t||_1 \to 0$ as $||Tx_n - t||_1 \to 0$. But since $||Tx_n - t||_1 \to 0$ and $||Tx_n - t||_1 \to 0$ as $||Tx_n - t||_1 \to 0$. But since $||Tx_n - t||_1 \to 0$ and $||Tx_n - t||_1 \to 0$ as $||Tx_n - t||_1 \to 0$.

(4) TTt = TSt = STt = SSt.

Therefore by (2) and (4), St=SSt, and so, St is a common fixed point of S and T. Uniqueness of the common fixed point of S and T follows easily.

As an immediate consequence of Theorem 2, we have the following:

Corollary 1. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space which $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ on X. If two commuting mappings S and T from X into itself satisfy the following conditions:

- (1) $S^n(X) \subset T(X)$ for a positive integer n,
- (2) $||S^nx S^ny||_2 \le \alpha \{||Tx S^nx||_2 + ||Ty S^ny||_2\} + \beta \{||Tx S^ny||_2 + ||Ty S^nx||_2\} + \gamma ||Tx Ty||_2 \text{ for all } x, y \text{ in } X, \text{ where } \alpha, \beta, \gamma \text{ are non-negative and } 2\alpha + 2\beta + \gamma < 1,$
 - (3) S and T are continuous with respect to $\|\cdot\|_1$.

Then S and T have a unique common fixed point in X.

In case T is an identity mapping, the following corollary is obtained as a special case of our theorem.

Corollary 2. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space which $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$. If a mapping S from X into itself satisfies the following conditions:

(1) $||Sx-Sy||_2 \le \alpha \{||x-Sx||_2 + ||y-Sy||_2\} + \beta \{||x-Sy||_2 + ||y-Sx||_2\} + \gamma ||x-y||_2$, for all x, y in X, where α, β, γ are non-negative and $2\alpha + 2\beta + \gamma < 1$,

(2) S is continuous with respect to $\|\cdot\|_1$. Then S has a unique fixed point in X.

References

- [1] A. Alexiewicz, The two-norm spaces, Stud. Math. Special vol. (1963), 17-20.
- [2] A. Alexiewicz, On the two norm convergence, Stud. Math. 14(1954), 49-56.
- (3) A. Alexiewicz and Z. Semandi, The two-norm spaces and their conjugate spaces, *Stud. Math.* 18(1959), 257-293.
- [4] A. Alexiewicz and Z. Semandi, Linear functional on two-norm spaces, Stud. Math. 17(1958), 121-140.
- [5] S.S. Chang, A common fixed point theorem for commuting mappings, Proc. Amer. Math. Soc. 83(1981), 645-652.
- [6] K.M. Das and K.V. Naik, Common fixed point theorems for commuting maps on Metric space, Proc. Amer. Math. Soc. 77 (1979), 369-374.
- [7] K. Iseki, Fixed point theorems in complete metric spaces, Math. Sem. Notes, November (1974), 1-6.
- [8] G. Jungek, A common fixed point theorem for commuting maps on L-spaces, Math. Japan. 25 (1980), 81-85.
- [3] C. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly. 83(1976), 261-263.
- [10] W. Orlicz, Linear operations in Saks spaces (I), Stud. Math. 11(1950), 237-272.
- [11] W. Orlicz, Linear operations in Saks spaces (II), Stud. Math. 15(1955), 1-25.
- [12] W. Orlicz and V. Ptak, Some remarks on Saks spaces, Stud. Math. 16(1957), 56-68.
- [13] S.L. Singh, A common fixed point theorem in a space with two metrics, *Pure and Appl. Math. Sci.* XIV (1981), 35-37.
- [14] S.L. Singh, A fixed point theorem, Indian J. Pure and Appl. Math. 11(12) (1980), 131-134.
- [15] S.L. Singh, On common fixed points of commuting mappings, Math. Sem. Notes 5(1977), 131-134.
- [16] S.L. Singh, A topologisation of Saks spaces, Bull. Pol. Acad. Sci. 5(1957), 773-777.