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1. Introduction

Let G be a group and let F be a field. We denote by GL,(F) the group of all non-singular nx 2

matrices over F. A matrix representation of G over F is a group homomorphism
¢ : G—GL,(F)
The character X, of such a representation ¢ is the function of G into F defined by
Xp(z)=tr ¢(z), for all z&G.

The theory of representations is indispensible to study the structures of groups. If F is a field of
characteristic zero, the theory of representations over Fis called the ordinary representation theory.

The deeper properties of the characters of a finite group G come from a study of the group
algebra F(G) of G over the field F and of modules over this algebra.

In this note we will prove the following two theorems.
Theorem 3.1. If G is the group of units of a ring R and if G is finite of odd order, the subring
S of R generated by G is a finite direct sum of Galois fields of characteristic 2 .
S=GF(2")P---@GF(2*).
Theorem 3.2. For any group G (finite or infinite), the group algebra C(G) of G over the complex
field C is semisimple.

9. Preliminaries

In this section, we will state some definitions and necessary theorems.

Definition Let G be any group (finite or infinite) and let F be a field. The group algebra
F(G] is an F-vector space with basis G and with multiplication defined distributively using the given
multiplication of G:

Ya,x+2Xb,x=2 (a,+b.)x
b(Xa,x)=2(ba)x
(Za,x) (Zbyy) =2 (a:b,) xy
Definition Let R be a ring with 1. The Jacobsor radical J(R) of R is the set of all elements
of R which annihilate all the irreducible left (right) R-modules:
J(R)={r&R : rM=0( for all irreducible R-modules}
It is known that
J(R)={reR : 1—sr is invertible for all s=R}

A ring R is said to be semisimple if its Jacobson radical J(R) is zero.



From the following theorem comes out the whole theory of group representation.
Theorem 2.1. (Wedderburn-Artin) Let R be a semisimple artinian ring. Then
R=Mat,,(D,)DMat,,(D;) P---DMat,,(D,)
Where the D; are divison rings and the Mat, (D)) are the rings of all n;x n; matrices over D;.

The following theorem is well-known
Theorem 2.2. (Maschke) Let G be a finite group. The group clgebra F(G] of G over a field F is
semisimple if and only if the characteristic of F does not divide the order of G.

The proofs of the following lemmas are well-known.
Lemma 2.3. (Wedderburn) A finite division ring is a finite field.
Lemma 2. 4. The general linear group GL,(q) over the Galois field GF(q) is of order
IGL,(9)|=(¢"-D (¢"—@) - (¢"—¢" D).
Lemma 2.5. The multiplicative group of the finite field is cyclic.

3. Main theorems

In this section we will prove our main theorems.

Theorem 3.1, If G is the group of units of a ring R and if G is finite of odd order, then the
subring S of R genmerated by G is a finite direct sum of Galois fields of characteristic 2.
S=GF(@")®--EGF(2*)

Proof Since G is of odd order, —1=1; otherwise {—1,1} would be a subgroup of G of order 2.
Hence the subring S generated by G is the group algebra F(G), where F=GF(2) the Galois field
with two elements. Since the characteristic of F does not divide the order of G, Maschke’s theorem
implies that F(G) is semisimple.

By the Wedderburn-Artin theorem, F[G] is the finite direct sum of Mat, (D;), i=1.....r. By Lemma
2.3, the finite division rings D; must be fields containing GF(2). Hence each D; is a Galois field
GF (2%) for some k;. By Lemma 2.4, the number of units in Mat, (D;) is odd if and only if n,=1]

This completes the proof.

Corollary A finite group G of odd order is the group of units of some ring if and only if G is
abelian and is the finite direct product of cyclic groups G,, where the order of each G; is of the form
2ki-1

Proof The assertion is an immediate consequence of Theorem 3.1 and Lemma 2.5,

Now we will prove the following theorem by the analytic method.
Theorem 3.2. For any group G (finite or infinite), the group algebra C(G) over the complex field
C is semisimple.
Proof We define a trace map ¢r on C(G) into C by
tr (Za,x)=a,
Clearly tr is a C-linear functional on C(G) and tr af=tr fr. A Hermitian inner product on C(G)
can be defined by
(a, B)=Zab,

where a=Ja,x and B=2Xb.x. Let |a||=(a,a)!”? Furthermore we define a map * on C[G]



into C{G] by
a*=3a,z7), if a=Xa.x
Then it is easy to see that
(a, @) =tr aa*=|al|?
Moreover, we introduce an auxiliary norm on C[G) by defining |a|=2|q,| if a=Za,z. Clearly
la+Bl<|al+]|8] and |ap|<|a]lpl.
Now let a be a fixed element of JC(G). Then for all complex number ¢, the element 1—z is
invertible, and we can consider the map
fQ)=tr(1—Ca)~?
“We will show that f is an entire function and we will find its Taylor series about the origin.
For convenience we set g({)=(1—a)~! so that f({)=tr g({). Then we have the basic ideatity
g —gm=_C-nag)e®).
We first show that [g(7)| is bounded in a neighborhood of {. Now by the above g(n)=g()—
C—7)agg() so g [{I—-|C~7]lag@) [} =1g@)|.
In particular, if we choose 7 sufficiently close to { then we have
lg(m|=2]g®|
Next we show that f({) is an entire function. From the basic identity it follows that
g —gm==C-nag® @) — E—ag@g}.
Hence by dividing this equation by {—7 and by taking traces, we obtain

_JfLC)C Eﬁ,‘c—(ﬂ)—‘—" ag(©)*=—C-ntr a’g(O’%@).

Finally since |¢r 7| = |r] we conclude from the boundeness of [g()| in a neighborhood of ¢ that

}713;'1 f(C)C:.;(ﬂ) =tr ag(Q)?
Hence f({) is an entire function with f/({)=tr ag({)?
Now we can show that

f(C)=§ g tr o

is the Taylor series expansion for f(§) in a neighborhood of the origin. Furthermore, f is an entire
function and hence the above series describes f({) and converges for all {. In particular we have
lim ¢r a®=0

n—ee

and this holds for all a=JC(G].
We conclude the proof by showing that if JC[G)#( then there exists an element as=JC(G)

which does not satisfy the above. Indeed, suppose 8 is a nonzero element of JC[GJ and set a=
BB*/1BlI2. Then a=JC[G) since the Jacobson radical is an ideal. Moreover, we have a=a* and
tr a=|l"2r BA*=1pI-2IAIP=1.
Now the powers of a are also symmetric under ¥so for all m=0 we have
tr a®™'=tr a¥ (a®)*=]a? |22 (tr a?")2,
Hence by induction ¢r a®"=1 for all m=0, and this contradicts the fact that ¢r a"—0. Thus
JC(G)=0 and the result follows.
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