On Group Algebras

by Yong Han, Shin Central Vocational Training Institute

1. Introduction

Let G be a group and let F be a field. We denote by $GL_n(F)$ the group of all non-singular $n \times n$ matrices over F. A matrix representation of G over F is a group homomorphism

$$\varphi: G \longrightarrow GL_n(F)$$

The character χ_{φ} of such a representation φ is the function of G into F defined by

$$\chi_{\varphi}(x) = tr \ \varphi(x)$$
, for all $x \in G$.

The theory of representations is indispensible to study the structures of groups. If F is a field of characteristic zero, the theory of representations over F is called the ordinary representation theory.

The deeper properties of the characters of a finite group G come from a study of the group algebra F(G) of G over the field F and of modules over this algebra.

In this note we will prove the following two theorems.

Theorem 3.1. If G is the group of units of a ring R and if G is finite of odd order, the subring S of R generated by G is a finite direct sum of Galois fields of characteristic 2:

$$S=GF(2^{k_1})\oplus\cdots\oplus GF(2^{k_r})$$
.

Theorem 3.2. For any group G (finite or infinite), the group algebra C(G) of G over the complex field C is semisimple.

2. Preliminaries

In this section, we will state some definitions and necessary theorems.

Definition Let G be any group (finite or infinite) and let F be a field. The group algebra F(G) is an F-vector space with basis G and with multiplication defined distributively using the given multiplication of G:

$$\sum a_x x + \sum b_x x = \sum (a_x + b_x) x$$
$$b(\sum a_x x) = \sum (ba_x) x$$
$$(\sum a_x x) \cdot (\sum b_y y) = \sum (a_x b_y) xy$$

Definition Let R be a ring with 1. The *Jacobson radical* J(R) of R is the set of all elements of R which annihilate all the irreducible left (right) R-modules:

$$J(R) = \{r \in R : rM = 0 \text{ for all irreducible } R\text{-modules}\}$$

It is known that

$$J(R) = \{r \in R : 1 - sr \text{ is invertible for all } s \in R\}$$

A ring R is said to be semisimple if its Jacobson radical J(R) is zero.

From the following theorem comes out the whole theory of group representation.

Theorem 2.1. (Wedderburn-Artin) Let R be a semisimple artinian ring. Then

$$R \cong Mat_{n_1}(D_1) \oplus Mat_{n_2}(D_2) \oplus \cdots \oplus Mat_{n_r}(D_r)$$

Where the D_i are divison rings and the $Mat_{n_i}(D_i)$ are the rings of all $n_i \times n_i$ matrices over D_i .

The following theorem is well-known

Theorem 2.2. (Maschke) Let G be a finite group. The group algebra F(G) of G over a field F is semisimple if and only if the characteristic of F does not divide the order of G.

The proofs of the following lemmas are well-known.

Lemma 2.3. (Wedderburn) A finite division ring is a finite field.

Lemma 2.4. The general linear group $GL_n(q)$ over the Galois field GF(q) is of order

$$|GL_n(q)| = (q^n-1)(q^n-q)\cdots(q^n-q^{n-1}).$$

Lemma 2.5. The multiplicative group of the finite field is cyclic.

3. Main theorems

In this section we will prove our main theorems.

Theorem 3.1. If G is the group of units of a ring R and if G is finite of odd order, then the subring S of R generated by G is a finite direct sum of Galois fields of characteristic 2:

$$S = GF(2^{k_1}) \oplus \cdots \oplus GF(2^{k_r})$$

Proof Since G is of odd order, -1=1; otherwise $\{-1,1\}$ would be a subgroup of G of order 2. Hence the subring S generated by G is the group algebra F(G), where F=GF(2) the Galois field with two elements. Since the characteristic of F does not divide the order of G, Maschke's theorem implies that F(G) is semisimple.

By the Wedderburn-Artin theorem, F[G] is the finite direct sum of $Mat_{n_i}(D_i)$, $i=1,\ldots,r$. By Lemma 2.3, the finite division rings D_i must be fields containing GF(2). Hence each D_i is a Galois field $GF(2^{k_i})$ for some k_i . By Lemma 2.4, the number of units in $Mat_{n_i}(D_i)$ is odd if and only if $n_i=1$ This completes the proof.

Corollary A finite group G of odd order is the group of units of some ring if and only if G is abelian and is the finite direct product of cyclic groups G_i , where the order of each G_i is of the form $2^{k_i}-1$

Proof The assertion is an immediate consequence of Theorem 3.1 and Lemma 2.5.

Now we will prove the following theorem by the analytic method.

Theorem 3.2. For any group G (finite or infinite), the group algebra C[G] over the complex field C is semisimple.

Proof We define a trace map tr on C(G) into C by

$$tr(\Sigma a_x x) = a_1$$

Clearly tr is a C-linear functional on C[G] and tr $\alpha\beta = tr$ βr . A Hermitian inner product on C[G] can be defined by

$$(\alpha, \beta) = \sum a_x \bar{b}_x$$

where $\alpha = \sum a_x x$ and $\beta = \sum b_x x$. Let $\|\alpha\| = (\alpha, \alpha)^{1/2}$ Furthermore we define a map * on C(G)

into C(G) by

$$\alpha^* = \sum \bar{a}_x x^{-1}$$
, if $\alpha = \sum a_x x$

Then it is easy to see that

$$(\alpha, \alpha) = tr \alpha \alpha^* = \|\alpha\|^2$$

Moreover, we introduce an auxiliary norm on C(G) by defining $|\alpha| = \sum |a_x|$ if $\alpha = \sum a_x x$. Clearly $|\alpha + \beta| \le |\alpha| + |\beta|$ and $|\alpha\beta| \le |\alpha| |\beta|$.

Now let α be a fixed element of JC(G). Then for all complex number ζ , the element $1-\zeta\alpha$ is invertible, and we can consider the map

$$f(\zeta) = tr(1-\zeta\alpha)^{-1}$$

We will show that f is an entire function and we will find its Taylor series about the origin.

For convenience we set $g(\zeta) = (1-\zeta\alpha)^{-1}$ so that $f(\zeta) = tr \ g(\zeta)$. Then we have the basic identity $g(\zeta) - g(\eta) = (\zeta - \eta) \alpha g(\zeta) g(\eta)$.

We first show that $|g(\eta)|$ is bounded in a neighborhood of ζ . Now by the above $g(\eta) = g(\zeta) - (\zeta - \eta) \alpha g(\zeta) g(\eta)$ so $|g(\eta)| \{1 - |\zeta - \eta| |\alpha g(\zeta)|\} \le |g(\zeta)|$.

In particular, if we choose η sufficiently close to ζ then we have

$$|g(\eta)| \leq 2|g(\zeta)|$$

Next we show that $f(\zeta)$ is an entire function. From the basic identity it follows that

$$g(\zeta)-g(\eta)=(\zeta-\eta)\alpha g(\zeta)\left\{g(\zeta)-(\zeta-\eta)\alpha g(\zeta)g(\eta)\right\}.$$

Hence by dividing this equation by $\zeta - \eta$ and by taking traces, we obtain

$$-\frac{f(\zeta)-f(\eta)}{\zeta-\eta}-tr \ \alpha g(\zeta)^2=-(\zeta-\eta)tr \ \alpha^2 g(\zeta)^2 g(\eta).$$

Finally since $|tr \gamma| \leq |\gamma|$ we conclude from the boundeness of $|g(\eta)|$ in a neighborhood of ζ that

$$\lim_{\eta \to \zeta} \frac{f(\zeta) - f(\eta)}{\zeta - \eta} = tr \ \alpha g(\zeta)^2$$

Hence $f(\zeta)$ is an entire function with $f'(\zeta) = tr \alpha_g(\zeta)^2$

Now we can show that

$$f(\zeta) = \sum_{i=0}^{\infty} \zeta^{i} tr \alpha^{i}$$

is the Taylor series expansion for $f(\zeta)$ in a neighborhood of the origin. Furthermore, f is an entire function and hence the above series describes $f(\zeta)$ and converges for all ζ . In particular we have

$$\lim_{n\to\infty} tr \ \alpha^n = 0$$

and this holds for all $\alpha \in JC(G)$.

We conclude the proof by showing that if $JC[G] \neq 0$ then there exists an element $\alpha \in JC[G]$ which does not satisfy the above. Indeed, suppose β is a nonzero element of JC[G] and set $\alpha = \beta \beta^* / \|\beta\|^2$. Then $\alpha \in JC[G]$ since the Jacobson radical is an ideal. Moreover, we have $\alpha = \alpha^*$ and

$$tr \alpha = \|\beta\|^{-2}tr \beta\beta^* = \|\beta\|^{-2}\|\beta\|^2 = 1.$$

Now the powers of α are also symmetric under *so for all $m \ge 0$ we have

$$tr \ \alpha^{2^{m+1}} = tr \ \alpha^{2^m} (\alpha^{2^m})^* = \|\alpha^{2^m}\|^2 \ge (tr \ \alpha^{2^m})^2.$$

Hence by induction $tr \alpha^{2^m} \ge 1$ for all $m \ge 0$, and this contradicts the fact that $tr \alpha^n \to 0$. Thus JC[G] = 0 and the result follows.

References

- 1. Curtis, C.W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 2. Dornhoff, L., Group representation theory, Marcel Dekher, New York, 1971.
- 3. Ditor, S.Z., On the group of units of ring, Amer. Month Math., 1971. 522-523.
- 4. Feit, W. Characters of finite groups, Benjamin, New York 1967.
- 5. Gorenstein, D., Finite groups, Harper and Row, New York, 1968.
- 6. Herstein, I.N., Non commutative rings, Carus Mathematical Monographs, No. 15, Math. Assoc. Amer., 1971.
- 7. Passman, D.S., Group rings, Marcel Dekker, New York, 1972.