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1. Introduction

Let X and Y be compact Hausdorff spaces. Throughout this note, C(X) and C(Y) will denote
the algebras of all complex-valued continuous functions on X and Y respectively.

R. Phelps (3] proved various properties of the Choquet boundary M for a linear subspace M of
C(X) with 1eM. The relation between the extreme points of K,(A4,B) and the multiplicative
linear transformations in K,(A,B) was discussed in [4), where A and B are subalgebras of Z(X)
and C(Y) respectively, both of which contain the constant functions.

Note that the state space K(A) for A coincides with K;(A,B) when B is the algebra of complex
numbers. The purpose of this note is to clarify how 84 is related to 9B when A is algebraically
homomorphic to B.

2. Basic concepts

Let A and B be subalgebras of C(X) and C(Y) respectively, and assume that both A and B
contain the constant functions. Let L(A, B) be the set of all linear transformations from A into B,
and let Ki(4,B)={T:T=L(A,B) and T>0 and T1=1}, where T>0 means 7f>0 whenever f=
A and f>0, and 1 represents the function which equals 1 at each point. The functions in A and
B are bounded and hence these algebras have the supremum norms. Let BL(A, B) be the set of T
in L(A, B) such that

ITI=sup (§TAI NI L1, fEA}<leo,
and let
K,(A,B)={T:T=BL(A,B),|T|=1=T1}.

A subalgebra A of C(X) is said to be self-adjoint, if f<A whenever fcA(where f(z)=f(z)
for £ in X). It is easily seen that both of the above sets K are convex (that is, AT+ (1—-2)T,=
K whenever T, T.=K and 0<2<1). An element T of the convex set K is said to be an extreme
point of K, provided that T =%(T,+ T,) for Ty, T,=K implies that T=T,=T,. Equivalently,
T is an extreme point of K iff T4-U=K for some U in L(A, B) implies U=0. An element T of
L(A, B) is multiplicative, if Tfg=TfTg whenever f,g=A.

If B is the algebra of scalars, then K;(A, B), i=1,2, become sets of linear functionals, which
we abbreviate by K;(4). The analogous set of linrear functionals on B is denoted by K;(B).
We denote the evaluation functional at z in X by ¢,, defined by ¢.f=f(z) for each f in A.



Note that ¢, is multiplicative in K;(A), i=],2. Denoting by Az the set of real functions in ¢
we see that A is self-adjoint iff A=Agp+ids.
Proof of the following lemma appears in [4].

Lemma 1. Always, K;(A,B)CK,(A,B). These sets are equal iff A is self-adjoint.
Proof of the next lemma is a slight variation of Tate’s result for the real case [6).

Lemma 2. Let ¢ denote 1 or 2. If A is self-adjoint, then every multiplicative element of K;(4
is an extreme point of K;(A). :

Proof. Suppose that L is a multiplicative element of K;(4) and that L=—%—(L1+L2), L,L,
K:(A). It suffices to show that L=L,=L, on Aj. Since each L;>0, j=1,2, (L;f)?<L;(f% f{
each f in Ag. For, if f=Ap, then |f||-1—f>0, so|fll—L;f=L;(|fl-1—f)>0, which shows th
L;f is real. By Tate’s argument (6] (he considers the discriminant of the quadratic 0<L;((Af
1)2)=22L;(f%)+2AL;f+1 in 2, L;>0 implies that (L;f)2<L;(f*) for each f in Ag.

Hence, for such f, we have ZI—(Llf)2+—%—L1f+%(sz)2=(Lf)2=L(f’)=%L1(f”)+—%—Lz(f2)

—%(Llf)2+—%—(L2f)2, so that (L f—L,f)?<0. This shows that L,f=L,f and completes the proof

Now, we prove the next theorem which plays an important role in proving Theorem 6 and 7.

Theorem 3. Let X and Y be compact HausdorfF spaces, and let A be self-adjoint. Then K,(A,l
=K,(A, B) and the following assertions about an element T of L(A,B) are equivalent:

(i) T is multiplicative and is in K (A, B).

(ii) There exists a continuous functions &.Y—X such that Tf=fo& for all f in A.

Proof. The fact that K (4,B)=K,(A,B) comes from Lemma 1 and the fact that A is se
adjoint. It is obvious that (ii) implies (i) from the fact that K (A4, B)=K,(4, B).

To prove the converse, suppose that T is multiplicative, that y in Y, and consider ¢,°T. Tl
is multiplicative and is in K;(A)=K,(A), so by Lemma 2 it is an extreme point of K,(4). 1
the Arens-Kelley theorem [1] (see [2, p.278) for the complex case), there exists a unique poi
in X, which we denote by £(y), such that ¢,oT=g¢;,. This defines & for each y in Y; to see th
¢ is continuous, one uses the fact that the topology of X is the same as the “weak” topolo,
induced on it by C(X), and the fact that Tf is continuous on Y for each f in A.

3. Choquet boundaries for function algebras

Suppose that M is a linear subspace (not necessarily closed) of C(X) and that 1&M. Denote
K(M) (called the state space of A(cf. [5))) the set of all L in M* such that L(1)=1=] L], whe
M* is the dual of M. If we consider M* in its weak* topology, then K(M) is a nonempty comp:
convex subset of the locally convex space C(X)*.

Note that if L(1)=1=|L| for LeC(X)*, then L>0 (that is, Lf>0 whenever f>>0) [3].
Consider the evaluation functional ¢, of z in X, and let ¢, be the element of K(M) defined
¢ f=f(z), fin M. Note that ¢ is one-to-one, and hence is a homeomorphism, embedding X as

compact subset of K(M).



The intersection of all convex sets containing a subset £ of C(X)* is a convex set which
contains E and which is contained in every convex set containing E. This set is called the convezx
hull of E. The intersection of all closed (with respect to the weak* topology) convex sets containing
E is a closed convex set which contains E and which is contained in every closed convex set
containing E. This set is called the closed convexr hull of E.

Lemma 4. Suppose that M is a subspace of C(X) and 1e=M. Then K(M) equals the weak* closed
convex hull of the set pX of all evaluation functionals ¢, at z in X.
Proof. R. Phelps (33.

Definition Suppose that M is a linear subspace of C(X) and 1M. Let M be the set of all =
in X for which ¢, is an extreme point of K(M). We call M the Choguet boundary for M.
The following lemma shows that the Choquet boundary for M makes sense.

Lemma 5. An element L in K(M) is an extreme point of K(M) iff L=¢, for some x in OM.

Procf. The “if” part of this assertion comes from the definition of 8M. Tc prove the converse,
suppose that L in K(M) is an extreme point of dM. By Lemma 4, L is an extreme point of
the weak® closed convex hull of pX. The fact that L is contained in ¢X comes from Milman’s
converse [3] and the fact that ¢X is a compact subset of K(M). Then there exists z in X such
that ¢,=L and L is an extreme point of K(M).

It is known that if Mis all of C(X), then ¢X is the set of all extreme points of K(M),
equivalently, oM=2X.
Defirition By a function algebra in C(X), we mean any closed subalgebra of C(X) which

contains the constant functions and separates points of X.

4, Theorems

Throughout this section, let A and B be self-adjoint function algebras in C(X) and C(Y) for
compact Hausdorff spaces X and Y respectively. In fact, K;(3) in section 2 coincides with K(M)
in section 3, when M is a function algebra in C(X) and C(Y). Thus we can express these two

by K(M) without confusion.

Theorem 6. A linear transformation T in K,(A,B) is multiplicative iff there exists a continuous

Sunction £:Y—>X such that

(1) Tf=fo& for all f in A, and

(ii) for each y in 3B, there exists a point x in X with £(y)=x such that ¢,T=¢p,,

Proof. Suppose that T in K,(A, B) is multiplicative. Let & be the function given by Theorem
2. We are only to show that £ satisfies the condition (ii). Suppose that y is in the Choquet
boundary 0B for B, that is, the evlatuation functional ¢, is an extreme point of K(B). By the
condition (1), (@yT)(F)=(TF)(3)=(F&)(y)=¢enf for all fin A. Choose &(y)==z for some z
in X and then ¢,-T=¢,.

Now we will show that the point z is in dA. By Lemma 5, it is enough to show that ¢, is an

extreme point of K(A). It is obvious that ¢, is in K(A4). Since T is multiplicative in K,(A4, B),



¢yoT=p, is also multiplicative in K(A). It follows from Lemma 2 that ¢, is an extreme point of
K(4).
The converse is obvious from Theorem 3.

The next theorem is similar to the above as the reversed form.

Theorem 7. Suppose that T in K,(A, B) is multiplicative and that & given by Theorem 3 is surjective.
Then for each x in A, there exists a point y in 0B with £(y)=x such that ¢,°T=g,.

Proof. Suppose that z is in the Choquet boundary 64 for A. Since & is surjective, we can
choose a point y in Y such that £(y)=z. Hence we can choose the evaluation functional ¢, defined
by ¢,g=g(y) for all y in B. This implies pyoT=¢p,.

Enough to show that ¢, is an extreme point of K(B). If so, by the definition of the Choquet
boundary, y is in 9B and this completes the proof. We must show that ¢, is an extreme point of
K(B). Suppose that ¢,+=UeK(B) for U in B*, It is easily verified that (p,-2U)T= ¢,oT+Uo
TeK(A). From the definition of the extreme point and Lemma 2, U-T=(. This means that
U(TSf) =0 for all fin A. Hence U=0.
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