A Note on Choquet boundaries for function algebras

By Shi Woon Sung
Kun Kook University, Seoul, Korea

1. Introduction

Let X and Y be compact Hausdorff spaces. Throughout this note, C(X) and C(Y) will denote the algebras of all complex-valued continuous functions on X and Y respectively.

R. Phelps (3) proved various properties of the Choquet boundary ∂M for a linear subspace M of C(X) with $1 \in M$. The relation between the extreme points of $K_2(A, B)$ and the multiplicative linear transformations in $K_2(A, B)$ was discussed in [4], where A and B are subalgebras of C(X) and C(Y) respectively, both of which contain the constant functions.

Note that the state space K(A) for A coincides with $K_2(A,B)$ when B is the algebra of complex numbers. The purpose of this note is to clarify how ∂A is related to ∂B when A is algebraically homomorphic to B.

2. Basic concepts

Let A and B be subalgebras of C(X) and C(Y) respectively, and assume that both A and B contain the constant functions. Let L(A,B) be the set of all linear transformations from A into B, and let $K_1(A,B) = \{T: T \in L(A,B) \text{ and } T \geq 0 \text{ and } T = 1\}$, where $T \geq 0$ means $T \neq 0$ whenever $f \in A$ and $f \geq 0$, and 1 represents the function which equals 1 at each point. The functions in A and B are bounded and hence these algebras have the supremum norms. Let BL(A,B) be the set of T in L(A,B) such that

$$||T|| = \sup \{||Tf||: ||f|| \le 1, f \in A\} < \infty,$$

and let

$$K_2(A, B) = \{T: T \in BL(A, B), ||T|| = 1 = T_1\}.$$

A subalgebra A of C(X) is said to be *self-adjoint*, if $\overline{f} \in A$ whenever $f \in A$ (where $\overline{f}(x) = \overline{f(x)}$ for x in X). It is easily seen that both of the above sets K are convex (that is, $\lambda T_1 + (1-\lambda)T_2 \in K$ whenever $T_1, T_2 \in K$ and $0 \le \lambda \le 1$). An element T of the convex set K is said to be an extreme point of K, provided that $T = \frac{1}{2}(T_1 + T_2)$ for $T_1, T_2 \in K$ implies that $T = T_1 = T_2$. Equivalently, T is an extreme point of K iff $T \pm U \in K$ for some U in L(A, B) implies U = 0. An element T of L(A, B) is multiplicative, if Tfg = TfTg whenever $f, g \in A$.

If B is the algebra of scalars, then $K_i(A, B)$, i=1, 2, become sets of linear functionals, which we abbreviate by $K_i(A)$. The analogous set of linear functionals on B is denoted by $K_i(B)$.

We denote the evaluation functional at x in X by φ_x , defined by $\varphi_x f = f(x)$ for each f in A.

Note that φ_x is multiplicative in $K_i(A)$, i=1,2. Denoting by A_R the set of real functions in A we see that A is self-adjoint iff $A=A_R+iA_R$.

Proof of the following lemma appears in [4].

Lemma 1. Always, $K_2(A, B) \subset K_1(A, B)$. These sets are equal iff A is self-adjoint.

Proof of the next lemma is a slight variation of Tate's result for the real case [6].

Lemma 2. Let i denote 1 or 2. If A is self-adjoint, then every multiplicative element of $K_i(A)$ is an extreme point of $K_i(A)$.

Proof. Suppose that L is a multiplicative element of $K_i(A)$ and that $L=\frac{1}{2}(L_1+L_2)$, $L_1,L_2\in K_i(A)$. It suffices to show that $L=L_1=L_2$ on A_R . Since each $L_j\geq 0$, $j=1,2,(L_jf)^2\leq L_j(f^2)$ f each f in A_R . For, if $f\in A_R$, then $||f||\cdot 1-f\geq 0$, so $||f||-L_jf=L_j(||f||\cdot 1-f)\geq 0$, which shows th L_jf is real. By Tate's argument [6] (he considers the discriminant of the quadratic $0\leq L_j((\lambda f+1)^2)=\lambda^2L_j(f^2)+2\lambda L_jf+1$ in λ , $L_j\geq 0$ implies that $(L_jf)^2\leq L_j(f^2)$ for each f in A_R .

Hence, for such f, we have $\frac{1}{4}(L_1f)^2 + \frac{1}{2}L_1f + \frac{1}{4}(L_2f)^2 = (Lf)^2 = L(f^2) = \frac{1}{2}L_1(f^2) + \frac{1}{2}L_2(f^2) = \frac{1}{2}(L_1f)^2 + \frac{1}{2}(L_2f)^2$, so that $(L_1f - L_2f)^2 \le 0$. This shows that $L_1f = L_2f$ and completes the proof

Now, we prove the next theorem which plays an important role in proving Theorem 6 and 7.

Theorem 3. Let X and Y be compact Hausdorff spaces, and let A be self-adjoint. Then $K_1(A, B) = K_2(A, B)$ and the following assertions about an element T of L(A, B) are equivalent:

- (i) T is multiplicative and is in $K_1(A, B)$.
- (ii) There exists a continuous functions $\xi: Y \to X$ such that $Tf = f \circ \xi$ for all f in A.

Proof. The fact that $K_1(A,B)=K_2(A,B)$ comes from Lemma 1 and the fact that A is set adjoint. It is obvious that (ii) implies (i) from the fact that $K_1(A,B)=K_2(A,B)$.

To prove the converse, suppose that T is multiplicative, that y in Y, and consider $\varphi_y \circ T$. The is multiplicative and is in $K_1(A) = K_2(A)$, so by Lemma 2 it is an extreme point of $K_2(A)$. If the Arens-Kelley theorem [1] (see [2, p. 278] for the complex case), there exists a unique point X, which we denote by $\xi(y)$, such that $\varphi_y \circ T = \varphi_{\xi(y)}$. This defines ξ for each y in Y; to see the ξ is continuous, one uses the fact that the topology of X is the same as the "weak" topological induced on it by C(X), and the fact that Tf is continuous on Y for each f in A.

3. Choquet boundaries for function algebras

Suppose that M is a linear subspace (not necessarily closed) of C(X) and that $1 \in M$. Denote K(M) (called the *state space* of A(cf. [5])) the set of all L in M^* such that $L(1)=1=\|L\|$, when M^* is the dual of M. If we consider M^* in its weak* topology, then K(M) is a nonempty compacton one convex subset of the locally convex space $C(X)^*$.

Note that if L(1)=1=||L|| for $L \in C(X)^*$, then $L \ge 0$ (that is, $Lf \ge 0$ whenever $f \ge 0$) [3].

Consider the evaluation functional φ_x of x in X, and let φ_x be the element of K(M) defined $\varphi_x f = f(x)$, f in M. Note that φ is one-to-one, and hence is a homeomorphism, embedding X as compact subset of K(M).

The intersection of all convex sets containing a subset E of $C(X)^*$ is a convex set which contains E and which is contained in every convex set containing E. This set is called the *convex hull* of E. The intersection of all closed (with respect to the weak* topology) convex sets containing E is a closed convex set which contains E and which is contained in every closed convex set containing E. This set is called the *closed convex hull* of E.

Lemma 4. Suppose that M is a subspace of C(X) and $1 \in M$. Then K(M) equals the weak* closed convex hull of the set φX of all evaluation functionals φ_x at x in X.

Proof. R. Phelps [3].

Definition Suppose that M is a linear subspace of C(X) and $1 \equiv M$. Let ∂M be the set of all x in X for which φ_x is an extreme point of K(M). We call ∂M the Choquet boundary for M.

The following lemma shows that the Choquet boundary for M makes sense.

Lemma 5. An element L in K(M) is an extreme point of K(M) iff $L = \varphi_x$ for some x in ∂M . **Proof.** The "if" part of this assertion comes from the definition of ∂M . To prove the converse, suppose that L in K(M) is an extreme point of ∂M . By Lemma 4, L is an extreme point of the weak* closed convex hull of φX . The fact that L is contained in φX comes from Milman's converse [3] and the fact that φX is a compact subset of K(M). Then there exists x in X such

It is known that if M is all of C(X), then φX is the set of all extreme points of K(M), equivalently, $\partial M = X$.

Definition By a function algebra in C(X), we mean any closed subalgebra of C(X) which contains the constant functions and separates points of X.

4. Theorems

Throughout this section, let A and B be self-adjoint function algebras in C(X) and C(Y) for compact Hausdorff spaces X and Y respectively. In fact, $K_2(M)$ in section 2 coincides with K(M) in section 3, when M is a function algebra in C(X) and C(Y). Thus we can express these two by K(M) without confusion.

Theorem 6. A linear transformation T in $K_2(A, B)$ is multiplicative iff there exists a continuous function $\xi: Y \rightarrow X$ such that

(i) $Tf = f \circ \xi$ for all f in A, and

that $\varphi_x = L$ and L is an extreme point of K(M).

(ii) for each y in ∂B , there exists a point x in X with $\xi(y) = x$ such that $\varphi_y \circ T = \varphi_x$.

Proof. Suppose that T in $K_2(A, B)$ is multiplicative. Let ξ be the function given by Theorem 3. We are only to show that ξ satisfies the condition (ii). Suppose that y is in the Choquet boundary ∂B for B, that is, the evaluation functional φ_y is an extreme point of K(B). By the condition (i), $(\varphi_y \circ T)(f) = (Tf)(y) = (f \circ \xi)(y) = \varphi_{\xi(y)} f$ for all f in A. Choose $\xi(y) = x$ for some x in X and then $\varphi_y \circ T = \varphi_x$.

Now we will show that the point x is in ∂A . By Lemma 5, it is enough to show that φ_x is an extreme point of K(A). It is obvious that φ_x is in K(A). Since T is multiplicative in $K_2(A, B)$,

 $\varphi_y \circ T = \varphi_x$ is also multiplicative in K(A). It follows from Lemma 2 that φ_x is an extreme point of K(A).

The converse is obvious from Theorem 3.

The next theorem is similar to the above as the reversed form.

Theorem 7. Suppose that T in $K_2(A, B)$ is multiplicative and that ξ given by Theorem 3 is surjective. Then for each x in ∂A , there exists a point y in ∂B with $\xi(y)=x$ such that $\varphi_y \circ T = \varphi_x$.

Proof. Suppose that x is in the Choquet boundary ∂A for A. Since ξ is surjective, we can choose a point y in Y such that $\xi(y)=x$. Hence we can choose the evaluation functional φ , defined by $\varphi_y g = g(y)$ for all y in B. This implies $\varphi_y \circ T = \varphi_x$.

Enough to show that φ_j is an extreme point of K(B). If so, by the definition of the Choquet boundary, y is in ∂B and this completes the proof. We must show that φ_j is an extreme point of K(B). Suppose that $\varphi_j \pm U \in K(B)$ for U in B^* . It is easily verified that $(\varphi_j \pm U) \circ T = \varphi_j \circ T \pm U \circ T \in K(A)$. From the definition of the extreme point and Lemma 2, $U \circ T = 0$. This means that U(Tf) = 0 for all f in A. Hence U = 0.

References

- [1] R.F. Arens and J.L. Kelley, Characterizations of the space of continuous functions over a compact Hausdorff space, *Tran. Amer. Math. Soc.* 62(1947), 499-508.
- [2] N. Dunford and J.T. Schwartz, Linear operators I, Interscience, New York, 1958.
- [3] R.R. Phelps, Lectures on Choquet's theorem, Van Nostrand, 1966.
- [4] R.R. Phelps, Extreme positive operators and homomorphisms, Tran. Amer. Math. Soc. 108(19 63), 265-274.
- [5] R.R. Phelps, The Choquet representation in the complex case, Bull. Amer. Math. Soc. Vol. 83, No. 3(1977), 299-312.
- [6] J. Tate, On the relation between extremal points of convex sets and homorphisms of algebras, Comm. Pure Appl. Math. 4(151), 31-32.