Note on the Gelfand Integral

By Bok-Dong, Yoo National Tax College, Su-won, Korea

1. Introduction

A theory of integration similar to the Bochner integral is impossible for functions that are only weak*-measurable.

Furthermore, it is impossible to use the Bochner integral theory directly to integrate a function f if ||f|| is not integrable.

Nevertheless, there are simple thing available to integrate some such functions and as a small part of Gelfand contribution to functional analysis shows this simple method has some strong properties which will be presently investigated.

Let (Ω, Σ, μ) be a finite measure space and X a Banach space.

If $f: \Omega \to X^*$ is X-measurable, then f is called weak*-measurable.

Let f be a weak*-measarable function on Ω such that $xf \in L_1(\mu)$, for all $x \in X$, then the Gelfand integral of f over $E \in \Sigma$ is defined by the element x_E^* of X^* such that

$$x_E^*(x) = \int_E x f d\mu$$
 for all $x \in X$.

2. Main theorems

Theorem 1. Suppose f is weak*-measurable function on Ω and $xf \in L_1(\mu)$ for all x in X. Then for each $E \in \Sigma$ there exists the Gelfand integral of f over E.

Proof. Let $E \in \Sigma$ and define $T: X \to L_1(\mu)$ by $T(x) = x(fx_E)$. Note that T is closed. Indeed, if $\lim_n x_n = x$ and $T(x_n) = g$ exists in $L_1(\mu)$, then some subsequence $x_{n_i}(fx_E) = T(x_{n_i})$ tends μ -almost everywhere to g.

But $\lim_{n} x_n(fx_E) = x(fx_E)$ everywhere. Hence $xf = g \mu$ -almost everywhere and T is a closed linear operator.

It is easy to see from closed graph theorem that T is continuous. Hence $||x(f)|| \le ||T|| \cdot ||x||$. Since the operation of integrating over E is continuous linear functional, it follows that $||f|| \le ||f|| \cdot ||f|| \le ||f|| \cdot ||f||$. Hence the mapping $x \to \int_E x f d\mu$ defines continuous linear functional on X.

Therefore there exist the element x_E^* of X^* such that $x_E^*(x) = \int_E x f d\mu$ for all $x \in X$, and $E \in \Sigma$.

Theorem 2. If f is Gelfand integrable, then $\int_{C_1} f d\mu$ is weak* countably additive vector measure on Σ .

Proof. If (E_n) is a sequence of disjoint members of Σ , then

$$x\left(\int_{n=1}^{\infty} \prod_{E_n} f d\mu\right) = \int_{n=1}^{\infty} \prod_{E_n} x f d\mu = \sum_{n=1}^{\infty} \int_{E_n} x f d\mu$$
$$= \sum_{x=1}^{\infty} x \left(\int_{E_n} f d\mu\right).$$

References

- [1] D.L. Cohn. Measure theory. Bostion, Birkhäuser 1980.
- [2] D.B. Dimitron. A remark the Gelfand integral. Functional Anal. 5(1971), pp. 84-85.
- [3] J. Diestel and B. Faires. On vector measures. Trans. Amer. Math. Soci, 1908(1974) pp. 253-271.
- [4] G.A. Edgar. Measurability in a Banach space. Indiana Univ. Math. J. 26(1977) pp. 663-677.