On R_1 spaces

By Chang Hyun Jung Gyeongsang National University, Jinju, Korea

0. Introduction

 R_1 spaces were introduced in 1961 by A.S. Davis [1]. In 1975, W. Dunham [2] investigated R_1 spaces and proved that R_1 spaces, which are weaker than T_2 and stronger than T_1 , preserve many of the properties of T_2 and regular spaces. Applying induced maps and natural maps, C. Dorsett [3] further investigated T_0 -idenification spaces and the results obtained many properties of R_1 spaces in 1978.

In this paper, we shall give additional properties of R_1 spaces and a generalization of a result proved by C. Dorsett[3]: If f is a continuous function from a compact R_1 space (X, \mathcal{I}) onto a T_0 space (Y, \mathcal{L}) , then (Y, \mathcal{L}) is T_2 if and only if f is closed.

1. Definitions and Preliminaries

We employ the following definitions of (1), (3), (5) and (7).

Definition 1.1. A space (X,\mathcal{F}) is R_1 iff for each points x_1 and x_2 in X such that $\overline{\{x_1\}} \neq \overline{\{x_2\}}$, there exists disjoint open sets U_1 and U_2 such that $\overline{\{x_1\}} \subset U_1$ and $\overline{\{x_2\}} \subset U_2$.

Definition 1.2. Let R be the equivalence relation on a space (X, \mathcal{F}) defined by x_1Rx_2 iff $\{\overline{x_1}\}$ = $\{\overline{x_2}\}$. Then the T_0 -identification space of (X, \mathcal{F}) is (X^*, \mathcal{F}^*) , where X^* is the set of equivalence classes of R and \mathcal{F}^* is the decomposition topology on X^* , which is T_0 .

Definition 1.3. A function $f:(X,\mathcal{F})\to (Y,\mathcal{L})$ is said to be *strongly* θ -continuous if for each point x in X and each open set $V\in\mathcal{L}$ containing f(x), there exists an open set $U\subseteq\mathcal{F}$ containing x such that $f(\bar{U})\subset V$.

Definition 1.4. If f is a function from a space (X,\mathcal{F}) onto a space (Y,\mathcal{L}) , then the function $f^*:(X^*,\mathcal{F}^*)\to (Y^*,\mathcal{L}^*)$ defined by $f^*(c(x))=c(f(x))$ is the induced map from (X^*,\mathcal{F}^*) onto (Y^*,\mathcal{L}^*) determined of f.

In (2), (4) and (5), W. Dunham, C. Dorsett, P.E. Long and L.L. Herrington proved the following theorems.

Theorem 1.5. A space (X,\mathcal{F}) is T_2 if and only if it is T_0 and R_1 .

Theorem 1.6. The natural map $P_X:(X,\mathcal{F})\to (X^*,\mathcal{F}^*)$ is continuous, closed, open, onto and $P_X^{-1}(P_X(U))=U$ for all $U\in\mathcal{F}$.

Theorem 1.7. Let f be a function from a space (X,\mathcal{F}) to a space (Y,\mathcal{L}) . Then the following are equivalent:

- i) f is strongly θ -continuous.
- ii) The inverse image of a closed set is θ -closed.

- iii) The inverse image of an open set is θ -open.
- iv) For each $x \in X$ and each net $x_{\alpha} \rightarrow x$, then the net $f(x_{\alpha}) \rightarrow f(x)$

2. The Main Theorems

Lemma 2.1. If f is a strongly θ -continuous function from a space (X, \mathcal{F}) onto a space (Y, \mathcal{L}) , then f^* is a strongly θ -continuous function from (X^*, \mathcal{F}^*) onto (Y^*, \mathcal{L}^*) .

Proof. Suppose that f is an onto function. Then f^* is an onto function. Let $x \in X$ and $V \in \mathcal{L}$ be an open set containing f(x). Then since f is strongly θ -continuous, there exists an open set $U \in \mathcal{F}$ containing x such that $f(\bar{U}) \subset V$. By Theorem 1.6, put $\bar{U} = P_X^{-1}(\bar{U}^*)$ for all $U^* \in \mathcal{F}^*$. Then $f(P_X^{-1}(\bar{U}^*)) \subset V$. Therefore $P_Y(f(P_X^{-1}(\bar{U}^*)) \subset P_Y(V)$. Thus $f^*(\bar{U}^*) \subset P_Y(V)$. Hence f^* is strongly θ -continuous.

Now, we show additional properties of R_1 spaces by apply Lemma 2.1.

Theorem 2.2. Let f be a strongly θ -continuous function from a space (X, \mathcal{I}) onto a R_1 space (Y, \mathcal{L}) . Then $\{(x_1, x_2) | \widehat{\{f(x_1)\}} = \widehat{\{f(x_2)\}}\}$ is θ -closed in $X \times X$.

Proof. Suppose that (Y, \mathcal{L}) is a R_1 space and $c(y_1) \neq c(y_2)$ for each $c(y_1)$ and $c(y_2)$ in Y^* . Then there exists disjoint open sets V^* and W^* such that $c(y_1) \in V^*$ and $c(y_2) \in W^*$. Therefore (Y^*, \mathcal{L}^*) is a T_2 space. By Lemma 2.1, f^* is strongly θ -continuous since f is strongly θ -continuous. Thus f^* is a strongly θ -continuous function from a space (X^*, \mathcal{F}^*) onto a T_2 space (Y^*, \mathcal{L}^*) . Therefore by Theorem 1.7, $\{(c(x_1), c(x_2)) | f^*(c(x_1)) = f^*(c(x_2))\}$ is θ -closed in $X^* \times X^*$. Hence $\{(x_1, x_2) | \overline{\{f(x_1)\}} = \overline{\{f(x_2)\}}\}$ is θ -closed in $X \times X$.

Corollary 2.3. Let f and g be strongly θ -continuous functions from a space (X, \mathcal{F}) onto a R_1 space (Y, \mathcal{L}) . Then $\{x \mid \overline{\{f(x)\}} = \overline{\{g(x)\}}\}$ is θ -closed in X.

Theorem 2.4. Let f and g be continuous functions from a space (X, \mathcal{F}) onto a R_1 space (Y, \mathcal{L}) . Then $\{x \mid \overline{\{f(x)\}} = \overline{\{g(x)\}}\}\$ is closed in X.

Proof. By Theorem 2.2 and [3], it is obvious.

We also obtain the following Theorem 2.5 which is a generalization of a result proved by C. Dorsett[3].

Theorem 2.5. If f is a continuous closed function from a paracompact space (X, \mathcal{I}) onto a space (Y, \mathcal{L}) , then (Y, \mathcal{L}) is a R_1 space.

Proof. Suppose that (X, \mathcal{F}) is a paracompact space and let $\{V_i | i \in I\}$ be any open covering of Y. Then $\{V_i | i \in I\}$ has an open refinement which can be decomposed into at most countably many nbd-finite families since f is continuous, closed and onto. Thus (Y, \mathcal{L}) is a paracompact space.

Therefore (Y, \mathcal{L}) is a weakly T_2 space by [2] and [6]. Let $\{\overline{y_1}\} \neq \{\overline{y_2}\}$ for each points y_1 and y_2 in Y. Then $y_1 \in V \in \mathcal{L}$ and $y_2 \in W \in \mathcal{L}$, where V and W are disjoint open sets. Since (Y, \mathcal{L}) is a R_0 space, $\{\overline{y_1}\} \subset V$ and $\{\overline{y_2}\} \subset W$. Therefore (Y, \mathcal{L}) is a R_1 space.

The following Corollary 2.6 and 2.7 follow immediately from Theorem 1.5 and 2.5.

Corollary 2.6. If f is a continuous function from a compact space (X, \mathcal{F}) , onto a T_0 space (Y, \mathcal{L}) , then (Y, \mathcal{L}) is T_2 if and only if f is closed.

Corollary 2.7. ([3]) If f is a continuous function from a compact R_1 space (X,\mathcal{F}) onto a T_0 space

 (Y, \mathcal{L}) , then (Y, \mathcal{L}) is T_2 if and only if f is closed.

References

- [1] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68(1961), 886-893.
- [2] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J., 15(1975), 41-50.
- [3] C. Dorsett, T_0 -idenification spaces and R_1 spaces, Kyungpook Math. J., 18(1978), 167-174.
- [4] C. Dorsett, Strongly R₁ spaces, Kyungpook Math. J., 21(1981), 155-161.
- [5] P.E. Long and L.L. Herrington, Strongly θ -continuous functions, J. Korean Math. Soc., 18 (1981), 21-28.
- [6] J.R. Munkres, Topology a first course, Prentice-Hall, Inc., New Jersey, 1975.
- [7] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.