A Study on z-S-closed Spaces

By Byung-sik In

Dept. of Mathematics, Mokweon College, Taejun, Korea.

Abstract: In this paper, we define the z-S-closed spaces using the notions of zero-sets and S-closed spaces introduced by T. Thompson, and investigate some properties of these spaces. We also obtain the following results.

If a space X is z-S-closed, then every cover of z-regular semiopen sets has a finite proximate subcover. A z-extremally disconnected z-QHC space is z-S-closed is contagious.

1. Preliminary definitions.

A subset Z of X is called a zero-set if $Z = \{x \in X | f(x) = 0\}$ for some continuous function $f: X \to R$, where X, R will represent, respectively, the topological space, the set of real numbers. Now, we consider the definitions of several basic terminologies using the concept of zero-set.

Definition 1.1. A subset E of X is said to be x-open if for every point x of E, there exists a zero-set nbd(abbreviation of neighborhood) N of x such that $x \in N \subset E$.

Definition 1.2. If E is a subset of X, then z-closure of E in X is the set z-cl $E = \{x \in X | for every zero-set nbd N of x, <math>N \cap E \neq \emptyset\}$.

Definition 1.3. A subset E of X is said to be z-closed if z-cl E=E.

Definition 1.4. Let E be a subset of X. A point x is said to be z-interior point of E if there exists a zero-set nbd N of x such that $x \in N \cap E$. The set of z-interior point of E is called the z-interior of E, written z-int E.

Definition 1.5. A family $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ of z-open subsets of X is said to be z-open cover of X if $\bigcup_{\alpha \in \mathcal{A}} V_{\alpha} = X$.

2. z-S-closed spaces and other spaces.

Definition 2.1. A space X is z-quasi-H-closed (denoted z-QHC) if every z-open cover has a finite proximate subcover (every z-open cover has a finite subfamily whose closures cover the space).

Definition 2.2. A set E in a space X is z-semiopen if z-int $E \subset E \subset z$ -cl (z-int E).

Definition 2.3. A space X is z-S-closed if every z-semiopen cover has a finite proximate subcover. It is obvious that every z-S-closed space is z-QHC but the converse is not true.

Definition 2.4. A subset E of X is said to be z-regular open if E=z-int (z-cl E).

Definition 2.5. A subset F of X is said to be z-regular closed if F=z-cl (z-int F).

Definition 2.6. A subset E of X is z-regular semiopen if there exists a z-regular open set U such that $U \subset E \subset z$ -cl U.

Therorem 2.7. If a space X is z-S-closed, then every cover of z-regular semiopen sets has a finite

proximate subcover.

Proof: The result follows from the fact that every z-regular semiopen set is z-semiopen.

Definition 2.8. A set E in a space X is strongly z-semiopen if E is z-semiopen and z-cl E=z-cl (z-int (z-cl E)).

Lemma 2.9. If a subset E of X is strongly z-semiopen, then z-int $(z-cl\ E)$ is z-regular semiopen. **Proof:** The result is immediate from definition 2.8.

Definition 2.10. A space X is strongly z-S-closed if every strongly z-semiopen cover has a finite proximate subcover.

Theorem 2.11. If every cover of z-regular semiopen sets has a finite proximate subcover, then a space X is strongly z-S-closed.

Proof: If the space is not strongly z-S-closed then there is a strongly z-semiopen cover $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ which has no finite proximate subcover. Then since z-int $(z-cl\ V_{\alpha}) \subset z-int(z-cl\ V_{\alpha}) \cup V_{\alpha} \subset z-cl\ (z-int(z-cl\ V_{\alpha}))$, $\{z-int(z-cl\ V_{\alpha}) \cup V_{\alpha} | \alpha \in \mathcal{A}\}$ is a z-regular semiopen cover which has no finite proximate subcover.

Definition 2.12. A space X is z-extremally disconnected if z-regular closed subsets of X is z-open. **Theorem** 2.13. A z-extremally disconnected z-QHC space is z-S-closed.

Proof: If X is z-extremally disconnected and $E \subset X$, then since z-int $(z-cl\ E) = E$, E is z-open, and since $(z-int(z-cl\ E))^c = E^c$, i.e, $z-cl(z-int\ E^c) = E^c$, E^c is z-open and so E is z-closed. Hence the z-regular open sets are z-clopen. On one had, since E is z-regular semiopen, there exists z-regular open set U such that $U \subset E \subset z-cl\ U$. Hence $U=E=z-cl\ U$. Thus z-regular semiopen sets are z-clopen, where E^c is the complement of E.

Lemma 2.14. If a subset E of X is z-regular closed, then E is z-regular semiopen.

Proof: Since E is z-regular closed, z-cl(z-int E) = E, i.e, z-int(z-cl(z-int E)) = z-int E. This implies that z-int E is z-regular open. Hence z-int E $\subset E$ $\subset z$ -cl(z-int E). Thus E is z-regular semiopen.

Theorem 2.15. If a subset E of a z-S-closed X is z-clopen, then E is z-S-closed.

Proof: Let $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ be a z-semiopen cover of E and let $E^c = V_{\alpha_0}$. Then $X = (\bigcup_{\alpha \in \mathcal{A}} V_{\alpha}) \cup V_{\alpha_0}$. Since X is z-S-closed, there exists a finite subfamily $\{V_{\alpha_i} | i=1, 2, \cdots n\}$ of $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ such that $X \subset (\bigcup_{i=1}^n z-cl \ V_{\alpha_i}) \cup z-cl \ V_{\alpha_0}$. On the other hand, since V_{α_0} is z-clopen, $z-cl \ V_{\alpha_0} = V_{\alpha_0}$ and so $E \subset \bigcup_{i=1}^n z-cl \ V_{\alpha_i}$. Hence E is z-S-closed.

Corollary 2.16. If a subset E of a z-S-closed X is z-regular closed, then z-int E is strongly z-S-closed.

Proof: Let $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ be a z-regular semiopen cover of E and let $E^c = V_{\alpha_0}$. Then $X = (\bigcup_{\alpha \in \mathcal{A}} V_{\alpha}) \cup (V_{\alpha_0})$. Since X is z-S-closed, there exists a finite subfamily $\{V_{\alpha_i} | i=2, \cdots n\}$ of $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ such that $X \subset (\bigcup_{i=1}^n z-cl \ V_{\alpha_i}) \cup z-cl \ V_{\alpha_0}$ and hence z-int $E \subset \bigcup_{i=1}^n z-cl \ V_{\alpha_i}$. Thus z-int E is strongly z-S-closed.

Corollary 2.17. If subsets E, F of a z-S-closed X is z-S-closed, then E∪F is z-S-closed.

Proof: Let $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ be a z-semiopen cover of $E \cup F$. Then $E \cup F \subset \bigcup_{\alpha \in \mathcal{A}} V_{\alpha}$. Since E is z-S-closed, there exists a finite subfamily $\{V_{\alpha_i} | i=1, 2, \cdots n\}$ of $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ such that $E \subset \bigcup_{i=1}^n z-cl \ V_{\alpha_i}$ and since F is z-S-closed, there exists a finite subfamily $\{V_{\alpha_k} | k=m+1, \cdots, m+n\}$ of $\{V_{\alpha} | \alpha \in \mathcal{A}\}$ such that $F \subset \bigcup_{k=m+1}^n z-cl \ V_{\alpha_k}$. Hence $E \cup F \subset \bigcup_{i=1}^m z-cl \ V_{\alpha_i}$ be a z-semiopen cover of $E \cup F$. Then $E \cup F$ is z-S-closed.

Lemma 2.18. Let E be a subset of X. Then $cl(z-cl\ E)=z-cl\ E$.

Proof: Suppose that there exists $x \in X$ such that $x \in cl(z-cl\ E)$ but $x \notin z-cl\ E$. Since $x \notin z-cl\ E$, there exists a zero-set nbd N of x such that $N \cap E = \phi$. On the while, $intN \cap z-cl\ E \neq \phi$. Take $x' \in ant\ N \cap z-cl\ E$. Then for every zero-set nbd M of x', $M \cap E \neq \phi$ since $x' \in z-cl\ E$. On the other hand, $N \cap M$ is a zero-set nbd of x', and since $N \cap E = \phi$, $(N \cap M) \cap E = \phi$. This contradiction proves the lemma.

Theorem 2.19. z-S-closed is contagious.

(A property R is contagious if a space has the property whenever a dense subset has the property.) Proof: Let \mathbb{Z} be a 7-S-closed dense subset of X. If $\{V_{\alpha}|\alpha\in\mathcal{A}\}$ is a z-semiopen cover of \mathbb{Z} , then, $\{V_{\alpha}\cap\mathbb{Z}|\alpha\in\mathcal{A}\}$ is a z-semiopen cover of \mathbb{Z} . Hence there exists a finite subfamily $\{V_{\alpha_k}\cap\mathbb{E}|k=1,2,\cdots n\}$ of $\{V_{\alpha}\cap\mathbb{E}|\alpha\in\mathcal{A}\}$ such that $\mathbb{E}\subset\bigcup_{k=1}^n z-cl(V_{\alpha_k}\cup\mathbb{E})\subset\bigcup_{k=1}^n z-cl(V_{\alpha_k})$. On one hand, $X=cl\mathbb{E}\subset cl\bigcup_{k=1}^n z-cl(V_{\alpha_k})$ is \mathbb{Z} . Thus \mathbb{Z} is \mathbb{Z} -S-closed.

Reference

- 1. Gillman and Jerison, Rings of Continuous Functions, D. Van Nostrand Company, Inc. Princeton, New Jersey, 1960.
- 2. J. Dugundji, Topology, Allyn and Bacon, Boston, 1970.
- 3. T. Thompson, S-closed spaces, Proc. Amer. Math. Soc, 60(1976), 335-338.
- 4. D. Cameron, Maximal QHC-spaces, Rocky Mountain. J. Math, 7(1977), 313-322.
- 5. D. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72(1978), 581-586.