Free-Radical Polymerization and Copolymerization of N-Acetyl ${\alpha}$-Aminoacrylic Acid

N-Acetyl ${\alpha}$-aminoacrylic Acid의 자유라디칼 중합 및 혼성중합

  • 박일현 (성균관대학교 이과대학 화학과) ;
  • 이종광 (한국에너지연구소) ;
  • 최재호 (인하대학교 이과대학 화학과) ;
  • 진정일 (고려대학교 이과대학 화학과)
  • Published : 1982.08.30

Abstract

The free radical polymerization and copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid were investigated. From the result of kinetic investigation of N-acetyl ${\alpha}$-aminoacrylic acid in DMF at $60^{\circ}C$, a rate equation of $R_p$ = $k_p[M]^{0.97}[I]^{0.59}$ was obtained. The overall activation energy for the polymerization was found to be 25.2 kcal/mole. Copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid with acrylic acid and styrene was carried out for the determination of monomer reactivity ratios. The monomer reactivity ratios for the monomer pairs determined at 70.0{\pm}0.1^{\circ}C$ using benzoyl peroxide as an initiator are; $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.49, $r_2$(acrylic acid) = 1.41, $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.44, $r_2$(styrene) = 0.91. The values of Alfrey-Price's Q and e parameters for N-acetyl ${\alpha}$-aminoacrylic acid were calculated to be 0.51 and 0.16 for the both systems. Differential thermal analysis and thermogravimetry showed that acrylic acid copolymers have poorer thermal stability as compared with the homopolymer of N-acetyl ${\alpha}$-aminoacrylic acid.

본 연구에서는 자유라디칼 메카니즘에 의한 N-acetyl ${\alpha}$-aminoacrylic acid의 단독중합 반응속도와 혼성중합 반응성을 연구하였으며, DMF 용매를 사용하여 $60^{\circ}C$에서 단독중합 시켰을 때의 중합속도 ($R_p$)는 단위체 농도 [M]와 개시제 농도 [I]에 대하여 $R_p$ = $k_p[M]^{0.97}[I]^{0.59}$의 관계를 나타내었다. 또한 이 단위체의 단독중합 총괄 활성화 에너지는 25.2 kcal/mole이었다. N-acetyl ${\alpha}$-aminoacrylic acid를 아크릴산 및 스티렌 단위체와 혼성중합 시켰을 때의 단위체 반응성비는 아래와 같았다. $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.49, $r_2$(acrylic acid) = 1.41; $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.44, $r_2$(styrene) = 0.91. Alfrey-Price 식을 이용하여 계산한 N-acetyl ${\alpha}$-aminoacrylic acid의 Q와 e값은 두 경우 모두 Q=0.51, e=0.16이었다. 단독중합체 및 혼성중합체들의 열적성질을 DTA 및 TGA법으로 분석하여 비교하여 보았다.

Keywords

References

  1. J. Poly. Sci. v.A3 J. P. Hermans;G. Smets
  2. Makromol. Chem. v.1 E. Trommsdorff;P. Lagally
  3. Makromol. Chem. v.73 K. Chikanishi;T. Tsuruta
  4. J. Poly. Sci. v.33 C. C. Unruh;T. M. Laakso
  5. J. Poly. Sci. v.7 B. Yamada;T. Otsu
  6. Monomers E. R. Blout;W. P. Hohenstein
  7. Makromol. Chem. v.178 S. Ponratnam;S. L. Kapur
  8. J. Amr. Chem. Soc. v.60 D. Shemin;R. M. Herbst
  9. Z. Physiol. Chem. v.187 M. Bergman;K. Grafe
  10. Berichte v.90 Wieland;Ohnacker;Ziegler
  11. Techniques of Polymer Synthesis and Characterization D. Braun;W. Kern
  12. Techniques of Polymer Synthesis and Characterization D. Braun;W. Kern
  13. Makromol. Chem. v.178 T. Ishida;K. Tsuda
  14. Makromol. Chem. v.178 K. Sugiyama;S. W. Lee
  15. J. Poly. Sci. v.28 J. C. Bevington;J. Toole
  16. Principles of Polymer Chemistry P. J. Flory
  17. Polymer Handbook J. Brandup;E. H. Lmmergut
  18. J. Poly. Sci. v.5 no.2 M. Fineman;S. D. Ross
  19. J. Poly. Sci. v.11 T. C. Schwan;C. C. Price
  20. Ind. J. Chem. v.13 P. K. Sen Gupta
  21. J. Research Natl. Bur. Standards v.41 R. Simha;L. A. Wall
  22. J. Poly. Sci., Polymer Chem. Edition v.13 C. D. Chow
  23. J. Macromol. Sci. Chem. v.A10 no.8 R. Roussel;J. C. Galin
  24. J. Poly. Sci. v.2 no.1 T. Alfrey;C. C. Price
  25. J. Poly. Sci. v.36 J. Furugawa;T. Tsuruta
  26. A Handbook of Practical Data, Techniques and References A. J. Gordon;R. A. Ford
  27. J. Poly. Sci. v.3 C. C. Price