Thermodynamic Properties of Kr Gas Adsorbed on Graphite Surface

흑연 표면에 흡착된 Kr 기체의 열역학적 성질

  • Woon-Sun Ahn (Department of Chemistry, Sung Kyun Kwan University) ;
  • Kyung Hee Ham (Department of Chemistry, Sung Kyun Kwan University) ;
  • Eun Ah Yoo (Department of Chemistry, Sung Shin Women's University) ;
  • Kwang Soon Lee (Department of Chemistry, Song Sim College for Woman)
  • 안운선 (성균관대학교 이과대학 화학과) ;
  • 함경희 (성균관대학교 이과대학 화학과) ;
  • 유은아 (성신여자대학교 화학과) ;
  • 이광순 (성심여자대학 화학과)
  • Published : 1982.08.30

Abstract

Assuming krypton molecules adsorbed on the graphite surface as a two-dimensional (2D) gas, 4th virial coefficient of the virial equation is calculated by the use of cluster integrals. The Henry's law constant, and 2nd and 3rd virial coefficients are also calculated. Adsorption isotherms calculated from this virial equation agree very satisfactorily with experimental results. The interaction energy of Kr-graphite surface is calculated assuming the pairwise additivity of Lennard-Jones(12,6) potential, and parametars therein are taken as; ${\varepsilon}_{gs}$/k = 71.1 K, ${\varepsilon}_{gg}$/k = 170 K, ${\sigma}_{gs}$ = 354 pm, and ${\sigma}_{gg}$ = 368 pm.

흑연 표면에 흡착된 Kr분자를 2D기체로 보고 2D비리알상태방정식의 넷째 비리알 계수를 cluster intergral을 이용해서 계산하였으며, 또한 Henry 상수와 둘째 및 셋째 비리알계수도 계산하였다. 그리고 이 상태방정식으로부터 흡착등온곡선을 구하여 실험결과와 비교하여 본 결과 상당히 만족스런 결과를 얻었다. Kr-고체표면 사이의 상호작용 에너지는 Lennard-Jones(12,6)퍼텐셜의 pairwise additivity를 가정하여 구하였으며, 여기에 사용한 파라미터는 ${\varepsilon}_{gs}$/k = 71.1 K, ${\varepsilon}_{gg}$/k = 170 K, ${\sigma}_{gs}$ = 354 pm 및 ${\sigma}_{gg}$ = 368 pm이다.

Keywords

References

  1. J. Chim. Phys. v.66 A. Thomy;X. Duval
  2. J. Chim. Phys. v.67 A. Thomy;X. Duval
  3. J. Chim. Phys. v.67 A. Thomy;X. Duval
  4. J. Phys. Chem. v.81 F. A. Putnam;T. Fort
  5. J. Phys. Chem. v.61 G. D. Halsey Jr.;C. F. Prenzlow
  6. J. Chem. Phys. v.36 G. D. Halsey Jr.;B. E. Fender
  7. J. Korean Chem. Soc. v.25 Woon-Sun Ahn;Y. Son;E. Yoo;K. Lee
  8. Statistical Mechanics Mayer;Mayer
  9. J. Chem. Phys. v.68 no.6 E. D. Glandt
  10. Rev. Mod. Phys. v.48 J. A. Barker;D. Henderson
  11. Molecular Theory of Gases and Liquid J. O. Hirschfelder;C. F. Curtiss;R. B. Bird