Abstract
STO-3G level computations were performed on n-propylamine, n-propylamine radical and cis-and trans-ethylene diamines in order to investigate structural contributions of (n${\pi}$/m) and (n-${\sigma}^*$) structures to the energy variations accompanying the conformational changes. It was found that (5${\pi}$/5) and (4${\pi}$/4) structures had attractive and repulsive nonbonded interactions, respectively, which were approximately additive. anti(n-${\sigma}^*$) structures had more stabilzing hyperconjugative interactions than syn(n-${\sigma}^*$) structures, but due to the large internuclear repulsion the net effect was destabilizing inthe former in contrast with the net stabilizing contribution in the latter. Moreover it was found that the stabilizing ${\pi}$-nonbond structure, (5${\pi}$/5) was always cooperatively reinforced by the more stabilizing anti(n-${\sigma}^*$) interaction, whereas the destabilizing (4${\pi}$/4) structure was accompanied by the less stabilizing syn(n-${\sigma}^*$) interaction. This type of cooperativity was found general through-bond interaction of the terminal lone pair lobes split the energy levels into two, $n_+ = \frac{1}{\sqrt{2}}(n_1 + n_2)$ and $n_- = \frac{1}{\sqrt{2}}(n_1 - n_2)$, the latter being the lower level, which can be shown using simple overlap patterns of the two lobes with a common vicinal ${\sigma}^*$ orbital.
여러 형태의(n${\pi}$/m) 및 (n-${\sigma}^*$) 구조가 에너지에 미치는 구조적인 기여를 살펴보기 위하여 n-프로필아민, n-프로필아민 라디칼, trans-및 cis-에틸렌 디아민에 대한 STO-3G 수준의 계산을 수행하였다. 그 결과 (5${\pi}$/5)구조가 (4${\pi}$/4)구조는 각각 인력 및 반발의 비결합 상호작용을 나타내었으며 서로 부가관계를 가짐을 알았다. anti(n-${\sigma}^*$) 구조는 syn(n-${\sigma}^*$)구조보다 강한 hyperconjugation효과를 보이지만 anti(n-${\sigma}^*$)구조에서 강한 핵간 반발력을 가지기 때문에 결과적으로 불안정한 겉보기 효과를 나타내었다. 더우기 안정화${\pi}$ -비결합 (5${\pi}$/5)구조는 anti(${\pi}$-${\sigma}^*$)구조를, 불안정화 ${\pi}$-비결합(4${\pi}$/4)구조는 syn(n-${\sigma}^*$)구조를 수반하며 상호 보강적으로 작용함을 알았다. 또한 이러한 상호 보강성이 일반적인 성질임을 알았다. 끝으로 말단의 고립 전자쌍에 의한 through-bond 상호작용을 논의하였으며 이러한 상호작용으로 에너지 준위가 $n_+ = \frac{1}{\sqrt{2}}(n_1\;+\;n_2)$와 $n_-\;=\;\frac{1}{\sqrt{2}}(n_1\;-\;n_2)$로 갈라지는데 이때 고립 전자쌍의 간단한 overlap pattern으로 n_준위가 안정한 준위임을 알았다.