Mixed Lanthanide Shift Reagents

혼합 란탄족 Shift Reagents

  • Man-Ho Lee (Department of Industrial Chemistry, Kyungpook National University) ;
  • Charles N. Reilley (Department of Chemistry, Univeristy of North Carolina)
  • 이만호 (경북대학교 공과대학 응용화학과) ;
  • Published : 1982.02.28

Abstract

Contact-only (COM) and dipolar-only (DOM) mixtures of the lanthanide shift reagents were prepared based on the Fi and Gi values deduced using individual Ln$(fod)_3$ (Ln = Pr, Nd, Eu, and Yb) and 4-picoline. The $F_i$ and $G_i$ values obtained directly by COM 1 and by DOM 1, which were appropriate mixture of Pr$(fod)_3$ and Eu$(fod)_3$, agreed well with those values obtained by experiments using individual Ln$(fod)_3$ shift reagents. Ei and Gi values obtained directly by COM 2 and by DOM 2, which were mixtures of Nd$(fod)_3$ and Yb$(fod)_3$, deviated from the expected values. The error was traced to the behavior of the ytterbium complexes.

란탄족 화합물인 Ln$(fod)_3$ (Ln = Pr, Nd, Eu 및 Yb)를 사용하여 contact-only (COM) 및 dipolar-only (DOM) 2성분계 혼합물을 만든 후 기질인 4-picoline의 $F_i$$G_i$값을 핵자기공명 이동으로 부터 측정하였다. 그 결과 Pr$(fod)_3$ 및 Eu$(fod)_3$의 혼합물인 COM 1 및 DOM 1으로 얻은 값들을 단일 Ln$(fod)_3$로 얻은 값들과 잘 일치하였다. 그러나 $(fod)_3$ 및 Yb$(fod)_3$의 혼합물인 COM 2 및 DOM 2로 얻을 값들을 단일 Ln$(fod)_3$로 얻은 값들과 상당한 오차를 나타내었다. 그 오차는 이테르븀(Yb) 착물에 기인하는 것으로 추정되었다.

Keywords

References

  1. Nuclear Magnetic Resonance Shift Reagents R.E. Sievers(ed.)
  2. Chemical Reviews v.73 A. F. Cockerill;G. L. O. Davis;D. M. Rackham
  3. Science v.190 M. R. Willcott, III;R. E. Davis
  4. CRC Critical Reviews in Anal. Chem. v.69 B. D. Flockhart
  5. Aldrichimica Acta v.10 K. A. Kime;R. E. Sievers
  6. Anal. Chem. v.47 C. N. Reilley;B. W. Good;J. F. Desreux
  7. J. Amer. Chem. Soc. v.98 J. F. Desreux;C. N. Reilley
  8. Anal. Chem. v.48 C. N. Reilley;B. W. Good;Allendoerfer
  9. J. Mag. Resonance v.8 B. Bleaney
  10. J. Chem. Soc. Chem. Comm. B. Bleaney;C. M. Dobson;B. A. Levin;R. B. Martin;R. J. P. William;A. V. Xavier
  11. Mol. Phys. v.26 R. M. Golding;J. Pykko
  12. Aust. J. Chem. v.25 R. M. Golding;M. P. Halton
  13. J. Amer. Chem. Soc. v.95 G. N. La Mar;J. W. Faller
  14. J. Amer. Chem. Soc. v.97 K. Ajisaka;M. Kainosho
  15. Inorg. Chem. v.6 C. S. Spring, Jr.;D. W. Meek;R. E. Sievers
  16. J. Amer. Chem. Soc. v.96 W.D. Horrocks, Jr.
  17. Mag. Resonance v.26 J.W.M. De Boer;P.J.D. Sakkers;C.W. Hilbers;E. De Boer, Jr.
  18. J. Amer. Chem. Soc. v.94 J. K. M. Saunders;S. W. Hanson;D. H. Williams
  19. J. Chem. Soc., D D. F. Evans;M. Wyatt
  20. J. Amer. Chem. Soc. v.96 R. E. Cramer;R. Dubois;K. Seff
  21. Inorg. Chem. v.14 R. E. Cramer;R. Dubois;C. K. Furuike
  22. J. Amer. Chem. Soc. v.95 J. W. Apsimon;H. Beierbeck;A. Fruchier
  23. Tetrahedron Letters K. Roth;M. Grosse;D. Rewick
  24. J. Amer. Chem. Soc. v.95 J. Reuben
  25. J. Chem. Soc., Chem. Comm. D. F. Evans;M. Wyatt
  26. J. Mag. Resonance v.25 J. W. M. De Boer;C. W. Hilbers;E. De Boer
  27. J. Mag. Resonance v.31 R. E. Cramer;R. B. Mayhard
  28. J. Mag. Resonance v.39 J. Reuben
  29. J. Mag. Resonance v.25 J. W. M. De Boer;P. J. D. Sakkers;C. W. Hilbers;E. De Boer
  30. Zh. Struckt Khim. v.21 V. F. Zolin;L. G. Koreneva
  31. J. Amer. Chem. Soc. v.103 F. S. Richardson;H. G. Brittain
  32. J. Amer. Chem. Soc. v.91 E. R. Birnbaum;T. Moeller
  33. J. Amer. Chem. Soc. v.95 R. E. Lenkinski
  34. Tetrahedron Letters J. W. Faller