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ABSTRACT

Wind wave generation is generally accompanied by a strong wind drift current near the surface.

The current can not be considered irrotational. The classical equation governing free surface

wave is formulated on the basis of irrotationality. To deal with the situation properly, an equation

governing free surface fluctuation of small amplitude is derived when the mean flow can not be

assumed irrotational. The equation encompass the classical one as a limiting case as expected.

INTRODUCTION

When surface waves are analysed, generally
the irrotationality is assumed and consequently
the motion associated with wave in fluid is
simply governed the by Laplace equation (e.g.,
Phillips(1977); Landau and Lifshitz(1959)).
The assumption is justified by the fact that
fluid is either at rest or in uniform motion
from the beginning when the viscosity is neg-
lected. However, simple observation (Choi
(1977)) shows that when wind blows over a
calm surface of water, the phenomenon being
observed is a strong drift current followed by
formation of waves. Generally the magnitude
of the current increases with fetch value and
decreases with depth. As a good approximation
the current may be considered irrotational and
the motion related to wave will be irrotational
too. For a more basic and fundamental analy-
sis of wave-current interaction, it is desirable
to formulate an equation governing surface
wave without any condition on the irrotation-
ality. This equation must encompass the classi-

cal one as a limiting case.

In this paper, an equation governing small
surface wave is obtained from the fundamental
equations of fluid dynamics, i.e., equation of
continuity and momentum equation. The res
sults are discussed comparing with those known
classically as a limiting case.

BASIC EQUATION

The schematic representation of the physical
situation is given in Figure 1. Wave motion
is assumed to be two dimensional. The x axis
is taken in the direction of flow and y axis in
the direction normal to x and upwards. Fluid
is assumed to be incompressible and have infi-
nite depth. In the following analysis viscous
effect will be neglected under the condition
that Reynolds number concerned is sufficiently
large.

The continuity equation is
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Fig. 1. Schematic representation of the physical
situation.

where « and v are x and y components of ve-

locity respectively and p is the pressure and g

is gravitational acceleration.

In the absence of wave motion, the undis-
turbed velocity components and pressure can
be taken without loss of generality

u=U(y)

v=0 3

p=P
Equation (3) satisfies equation (1) authomati-
cally and equation (2) becomes
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which gives
P=—ogy+P, ®)

where P, is pressure at the surface.
When the surface fluctuation is taken into
account, the velocity components and pressure

can be put
wu=U(y)tu
v=v’ (6)
p=P=p
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where ’ denotes fluctuation terms. Substitutihg
equation (6) into equations (1) and (2) yields
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where the higher order terms are neglected
under the condition that the fluctuating terms
are small enough compared to the undisturbed
term.

Now consider the condition at the bounda-
ries. Condition that motion associated with
surface fluctuation must vanish as y—-—oco can
be written
y——oo (10)

that pressure difference

v =0 as
Dynamic condition
across the free surface is equal to that due to
surface tension is

[p1=T(R,*+R."") an

where
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the subscript x and y meaning derivative with
respect to x and y respectively, T being the
coefficient of surface tension and » being the
surface elevation.

The kinematic boundary condition at the

surface is
D
—Dt—(Vi —y)=0 (13)

where
D 0 v 0
oF o Yo Uy
The conditions (11) and (13) can be linearized
on introducing (5) and (6) as
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The equations (10}, (14) and (15) constitute

boundary conditions to be satisfied by surface
fluctuation.

EQUATION GOVERNING
SURFACE ELEVATION

The classical equation governing the free

surface wave is

V=0 . (16)
g, 0% a(ﬁi¢)_
18y — T35 \ozr ) =0
at y=0 an
o
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where ¢ is the velocity potential. The dy-
namic cendition (17) on the free surface is im-
plemented through the combination of kine-
matic condition and a Bernouille equation which
is the integral of momentum equation. The
assumption that the motion concerned is irro-
tational enables to use the Bernouille equation.

In the present analysis, the irrotationality is
not assumed a priori and the Bernouille equa-
tion can not be used. One of the purposes of
present analysis is to see how the rotationality
modifies equations (16) and (17).
equations (7), (8) and (9) with boundary con-
ditions (10), (14) and (15) can be solved to
give the evolution of surface fluctuations as

Principally

a function of xr and ¢{. However, a more
tractable and useful form is obtainable.
Equation (7) allows to introduce stream

function ¢ defined by

3 (19
v'= oax

In terms of generalized Fourier transform, ¢
and % can be expressed

¢=ona@ear (20)

and

= iak(t) et=dk. 21

respectively.

In classical analysis, the dynamic boundary
condition (17) is obtained from equations (14)
and (15) with linearized the Bernouille equation
by eliminating pressure term. In the present
case, however, the pressure p’ at the surface
must be derived from either equation (8) or
equation (9). Integrating equation (9) from
—oo to 0 yields pressure at y=0(Brooke Ben-
jamin(1960)) as

~—1’p—=§° ( 2 un % Jay @)

Introducing equations (20) and (19) into
equation (22) gives
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where
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Substituting equations (23) and (21) into e-
quation (15) yields
dA t
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while by introducing equations (20), (21) and
(19), equation (14) can be written as

[(-922D- - ik Uoau 1) —ikgron(t) k=0

which becomes

da, (t)

“‘1k¢k0A‘ (t) + +lkU0ak(t) -0 (25)

where 0 denotes that the value
at y=0
In the following analysis, the

is evaluated

subscript &
and the parenthesis (¢#) and (y) will be omit-
ted.



72 I. Choi

Eliminating A,(f) between equations (24)
and (25) gives

{py d (da | .
- ‘?,)0 —dt (dt +1kaa>
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which, by partial integration of <{¢U), can be
put as
dU 1
(——d— +ikUﬂ)2a—ik<—W Wdy ] >
dt [,
<—d(§— +ikU°)a+<2; (-Z—k" +g>a
=0 (273
The boundary condition (10) becomes
¢—(Q as y——00 (28)
Eliminating p’ in equations (8) and (9) and
introducing equations (19), (20) and (21) yield
the equation governing ¢(y) in the form of

the Rayleigh equation

T Ve a*u _
(U-_c)( < k>¢ =0 (9
where
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Equation (29) with the boundary conditions
(27) and (28) substitutes the classical ones

(16), (17) and (18)-

DISCUSSION

Consider a case where U=0, Then equation

(29) becomes

( ;;2 —k”)qS:O (30)

whose solution satisfying boundary condition
(28) can be put

¢(y)=e (3D
Substituting equation (31) into equation (27)

gives

Lo (L rgr)a=o (32)

which is an equation governing free surface
wave propagation. Equation (32) is similar to
that obtained by Phillips(1957) in the analysis
of wind wave generation if the pressure fluc-
tuation in the air is neglected. Equation (32)
has a solution of the form

a(t)___etiu
where
T
L J ST~
gt=gr+ P

Taking into account equation (21), it is easy
to show that the phase velocity is

c:i\/i +%k : (33)

which is exactly the same one that obtained
from classical equation.
Now consider a case where U=U,=const.

Then equation (29) becomes

( & —kz) ¢=0 (34)

dy?

and the solution satisfying equation (28) is
¢(y)=ev (35)

Substituting equation (35) into equation (27)
yields

A R
(—dt_ +zkbo> a+(7— fgk)a—() (36)
whose solution can be written

a(t)=e it

where
o=—kUy+ \/gk+-7j_k-3
[
and then phase velocity is

T

e=Up —f}+~p—k (37)

which shows that the surface wave considered
in the previous case is transported with cons-
tant velocity U,.

Note that one of the undetermined coefficient
will be eventually determined by either
equation (32) or equation (36) in each case
when the initial condition is given. In search
for 2 physical mechanism, Phillips’ theory

(1957) is based on the solution of equation
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(32) taking into account the air pressure fluctu-
ation. On the other hand theory based on
of wind drift
current (e.g., Stern and Adam (1973)) begins
from equation (29). In

the hydrodynamic instability

instability normal
mode analysis makes equation (27) an eigen-
value equation. Both theories actually can not
explain satisfactorily the physical mechanism
of wind wave generation. It may be valuable
to take Phillips’ approach beginning from e-
quation (27) when the air pressure fluctuations

are considered.
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