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ABSTRACT

In this paper, a preliminary study is performed on the subset selection procedures
which are based on the trimmed means and the Hodges-Lehmann estimator derived
from the Wilcoxon test. The proposed procedures are compared to the Gupta's rule
through a small sample Monte Carlo study. The results show that the procedures

based on the robust estimators are successful in terms of efficiency and robustness.
1. Introduction

Consider a set of % independent populations 7, 73 -+, mx with unknown location
parameters 0, 0, -, Ox, respectively. The ordered location parameters are denoted by
01200, L i
The population with the largest location parameter 8, is called the “best” population.
Here, we are interested in selecting a nonempty subset of populations containing the
best one. Such a selection is called a correct selection(CS).
In subset selection procedures it is usually required that for any given rule R the
probability of a CS is at least a preassigned number P*, ie.,
ir}f P(CS|R)=P*, (LD

where P*=(1/k,1). We thus need the information of the configuration of #.’s for
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which the P*-condition (1.1) is satisfied. This configuration is called the least favorable
configuration(LF'C).

The subset selection rules in terms of the sample means have been developed by
Gupta(1956, 1965) and Gupta and Huang(1976), among others. Gupta and Huang
(1974) investigated selection rules based on the Hodges-Lehmann(H-L) estimators of
location for the problem of selecting the # (1<t<k) best populations, assuming that
the populations have a common known variance.

Gupta and Leong(1979) considered a subset selection procedure based on the sample
medians for double exponential populations. Gupta and Singh(1980) investigated the
. .selection rules based on the sample medians for normal and double exponential popula-
tions. Lorenzen and McDonald(1981) also studied the subset selection rules based on
the sample medians of logistic populations. All of these procedures are investigated
under the assumption of common known variance.

In the problem of subset selection, relatively little work is done in terms of robust
procedures. This is partly due to the complexity of the distributions of robust estima-
tors. In this paper we propose the subset selection procedures based on the trimmed
means and the H-L estimator derived from the Wilcoxon signed-rank test, using a
rather heuristic approach. The trimmed means and the H-L estimator are chosen
because of their simplicity in computation and their robustness with respect to the
heaviness of distribution tails. A parallel selection rule based on an H-L type estimator in
regression problems was considered by Song and Oh(1981).

In Section 2 brief descriptions of the trimmed means and the H-L estimator are given.
Section 3 contains the formulation of the subset selection rules and Section 4 deals
with a preliminary Monte Carlo study to compare the selection rules. The results show
that the heuristic selection rules proposed in this paper are quite robust with respect

to the heaviness of distribution tails and worthy to study further.

2. Location Parameter Estimators

Let X, X,, ---, X, be an independent sample of size # from a population with
cumulative distribution function(cdf) F(x—#) and density function f(x—6). We
assume that f(x) is continuous and symmetric about 0.

The a-trimmed mean as an estimator of 4 is defined by
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where p=1+[nal—na, h=n—2na, and X, <Xeq; Lo <Xy are the order statistics for
the random sample (see, for example, Andrews et al.(1972) and Stigler(1977) for
the behavior of the trimmed means). For computational convenience, we assume that
g=na is an integer. To Studentize the trimmed means, Tukey and McLaughlin(1963)

suggested the estimator

S’ = vSS(a)/(h(h—1))
for the standard deviation of X., where hA=n—2g=n—2na and SS(a) is the Winsorized
sum of squares given by
SS(a)=(g~+1 (Xeorry— X )24 (Xegwzy— X )P
+(X(n-g-l)—ya)z—i-(g+1)(X(,.-g)—7a)2 @.n
Through a small sample experiment they showed that a t-distribution with A—1, or
perhaps slightly less, degrees of freedom gives a good approximation to the distribution
of (X.—6)/S.’". Huber(1970) also confirmed that the Studentized trimmed mean has
both excellent small sample and excellent large sample properties.

The H-L estimator of 6, which derives from the Wilcoxon signed-rank test, is given
by

bomea{ H )

Hodges and Lehmann(1963) showed that +7(8—6) has a limiting normal distribution

with mean 0 and variance

= a0T
Note that #2(f)=z0¢%/3 in normal distribution case.
A typical robust estimator of the scale parameter ¢ is the median absolute deviation
(MAD) defined by
6=1.48 m?le;—rrlied(X,-)[,

where the value of (D(—i’—) =1. 48 is used to make the estimator consistent under the normal
distribution. Thus the asymptotic variance of V7 (8—0) can be estimated by 74?/3.

3. Selection Procedures

We again consider the set of k& indepedent populations 7y, 73, -+, m: With cdf’s
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F(x—6), F(x—6y), - F(x—0.), respectively. It is assumed that the # populations
have a common unknown variance ¢2 Let Xit, Xy, +++, X;n be an independent sample
of size n from =z;, i=1, 2, ---, k. Here we are interested in selecting a subset which
contains the “best” population associated with the largest location parameter 6,.

Gupta(1956, 1965) has considered the following subset selection rule R based on
the sample mean:

R : Select z; if and only if

)_(iz)_(nk1°‘—d§:‘y (3 1)
v

where X, is the sample mean of the it population, X, is the largest sample mean,
d=d(k,n, P*)>( is to be determined subject to the P*-condition (1. 1), and S? is the
usual pooled sample unbiased estimator for the common variance ¢® with v=k(n—1)

degrees of freedom. Assuming normality, the constant d is a solution of

§.§- 00 s dsdaGug.(du dy=P*,
where ¢ and ¢ are the c¢df and density function of standard normal, and ¢.(¥) is the
density of %./+/ .

The values of d have been tabulated by Gupta and Sobel (1957) for various com-
binations of 4, v and P* Gupta and Huang (1976) has also considered the case of
unequal sample sizes.

The rule R in (3.1) is based on the sample mean and the sample variance which
are known to be too sensitive to gross errors. We thus want to use some robust esti-
mators for the selection rules.

The first rule we propose is based on the trimmed means. The selection rule is
defined by

R, : Select z; if and only if

v -~ d,S
Xia= X pye— 2122 ,
ZX ke 3.2

where X, is the a-trimmed mean associated with the population 7;, X .« is the largest
a-trimmed mean, d,=d,(k,n, P*,a) is to be chosen to satisfy the P*-condition (1. 1),
and h=n—2g=n-—2na. S./ v/ is the pooled sample estimated standard error of the
a-trimmed mean, i.e.,

Se= vSS(a)/(RCA—1))
with
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I3
SS(a)=3 SS:(a)
i=1

and SS;(a) is the Winsorized sum of squares defined by (2.1) for the ith sample.
Here, we intuitively suggest the use of d in (3.1) for d, in (3.2). This intuitive idea
may be justified by the ¢-distribution approximation discussed in Section 2. The results
of a small sample Monte Carlo study presented in Section 4 also agree with this con-
jecture.

The second rule we propose is based on the H-L estimator. We now consider the
selection rule

R, : Select =; if and only if

8 >0, — ‘jZE’. : (3.3)

where 8, is the H-L estimator of #; based on the Wilcoxon signed-rank test, B, is the
largest of 8.'s, & is the pooled sample MAD estimator of ¢ defined by
6=1.48 med|X;;—med(X: D/,

where the median is taken over the #(n—1) largest median absolute deviations. We
consider only the B(n—1) largest absolute deviation to exclude £ zero deviations (when
#n is odd) or k smallest absolute deviations which appear twice (when #n is even). A
small sample experiment, which is not reported in this paper, supports this adjustment.

The value of d, in (3.3) is to be chosen to satisfy the P*-condition (1.1). But, note
that under the assumption of normality the asymptotic variance of v7(6:;—6)) is
z0%/3. We thus suggest the use of J7/3d, where d is defined in (3.1), for d. in
(3. 3).

Note also that, since the trimmed means and the H-L estimator have the location
invariance property, the infimum of the probability of CS for the rules R, and R,

occurs when 6,=0;=-+=0:.
4. An Empirical Study on the Procedures

A small sample Monte Carlo study was performed to compare the selection procedures
discussed in Section 3. The procedures considered are the Gupta’s rule R based on
the normal theory, the rule R, based on the trimmed means with a=1/9 (denoted by

R) and a=2/9 (denoted by R,'), and the rule R; based on the H-L estimator.
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In our simulation study we compared the four rules on the uniform (0,1), standard
normal, double exponential, and Cauchy distributions. The uniform random numbers
were generated by using the subroutine RANDU in PDP 11/70. The normal variates
were generated by standardizing the sum of twelve random numbers, and the inverse
integral transformation was applied to generate double exponential and Cauchy samples.

To investigate the performance of the rules we considered the case when the location
parameters are equally spaced, i.e.,

0:i=0,+(G—-1)do, i=1,2, -, bk,
where >0 is a given constant and ¢ is a standard deviation of each distribution, and
oc=2 is used for Cauchy distribution. The constants used in our simulation study are
k=5, n=9, and § v7% =0,2,4. 500 simulations were performed for each distribution
and for each value of 4.
When 6 v7% =0, the average number of selected population divided by 500 can be

interpreted as the empirical P*, the empirical probability of CS for LFC. These values
are given in Table 1.

Table 1. Empirical P* Based on 500 Replications

distribution rule .75 .90 % .975 .99

R .74 .90 .94 .97 .99

uniform R, .75 .90 .95 .97 .99
R/ .75 .90 .94 .97 .99

R, .78 .91 .95 .97 .98

R .75 .91 .95 .97 .99

normal R, .76 .91 .95 .98 .99
Ry 77 .90 .95 .98 .99

R, .75 .89 .94 .98 .99

R .76 . 90 .95 .97 .99

doulbe R, .76 .90 .95 .97 .99
exponential Ry .76 .91 .95 .97 .98
R, .71 .87 .92 .95 .97

R .68 .92 .97 .99 1.00

Cauchy R, .78 .92 .96 .97 .99
Ry .78 .92 .96 .97 .99

R, .65 .81 .87 .91 A

R : Gupta’s rule, R, : trimmed mean rule with a=1/9
R’ : trimmed mean rule with a=2/9, R,:H-L estimator rule

For uniform and normal distributions, the four rules seem to satisfy the P*-conditions.
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In double exponential case the empirical P* values of R, are slightly lower than the
required values. For Cauchy distribution, the empirical P* of R, violates the P*-condi-
tion. This may imply that the MAD estimator used in the rule R, slightly underesti-
mates the standard deviation of the H-L estimator for long-tailed distributions.

To compare the efficiencies of the selection rules, we use the definition of the relative
efficiency suggested by Song and Oh(1981). The relative efficiency of the procedure
R’ relative to the procedure R is defined by

 py EGIR) |, P(CS|IR)
¢R RO=FSIRyY “PCSIR)

where E(S|R) is the expected number of populations to be selected with a given rule

R. Note that the bounds of the relative efficiency are 1/k<<e(R’,R)<k, where k is

the number of populations. Thus, in our simulation study, the upper bound of

Table 2. Empirical Relative Efficiencies Based on 500 Repleciations

efficiency |3y | .75 .90 " 975 .99
uniform

e(Ry R) : B e e s oo
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e(R', R) is 5.

To estimate the relative efficiencies, empirical relative efficiencies of R, R/ and
R relative to R are computed from the number of times that each population is
selected for the configuration (8, 6,+d0, -+, 6,+(k—1)dc) in 500 replications. These
relative efficiencies are summarized in Table 2.

The results in Table 2 show that the Gupta’s rule R which is based on the normal
theory performs slightly better than the proposed rules in normal case. For long-tailed
distributions, the proposed rules are significantly better than the Gupta’'s rule. The
number of times that each population is selected, which is not reported in this paper,
also shows that the proposed rules are quite robust with respect to the heaviness of
distribution tails.

As a conclusion, this preliminary and heuristic study shows that the selection rules
based on the robust estimators are successful. The results indicate that it is worthy

to study further on this subject in terms of theory and extended simulation experiment.
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